Graphis

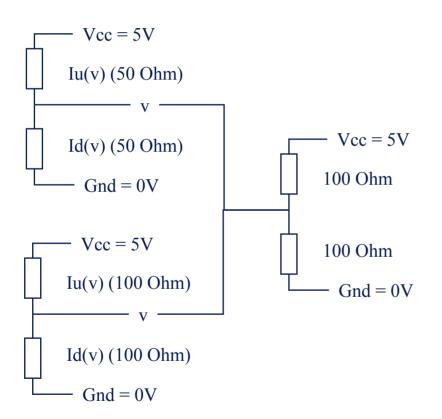
Driver Schedule Modeling

Christopher E. Reid and Bob Ross
IBIS Summit Meeting
Las Vegas, Nevada

June 21, 2001

Contents

- Driver Schedule Enhancement and Reduction Setups
- Possible Improvement for Over-clocked mode where start of next transition if before the finish of previous transition
- Application for SCSI
- Illustration of Driver Schedule for Discrete Waveform Shaping



Driver Schedule Examples (D6 is not legal - ambiguous)

Name	Rise-on	Rise-off	Fall-on	Fall-off
D 1	0	na	0	na
D2	na	0	na	0
D3	0	5ns	na	na
D4	5ns	0	na	na
D5	na	na	3ns	5ns
D6	0	5ns	0	5ns

Driver Schedule Test Circuit (Produces 1, 2, 3, 4 V outputs)

Name	50-Ohm	100-Ohm	V
Ls	Low	Low	1
Lw	Low	High	2
Hw	High	Low	3
Hs	High	High	4

Valid Setup Examples for Enhancement and Reduction

Driver	Rise-on	Rise-off	Fall-on	Fall-off
D_50	0ns	na	0ns	na
D_100	1ns	na	1ns	na

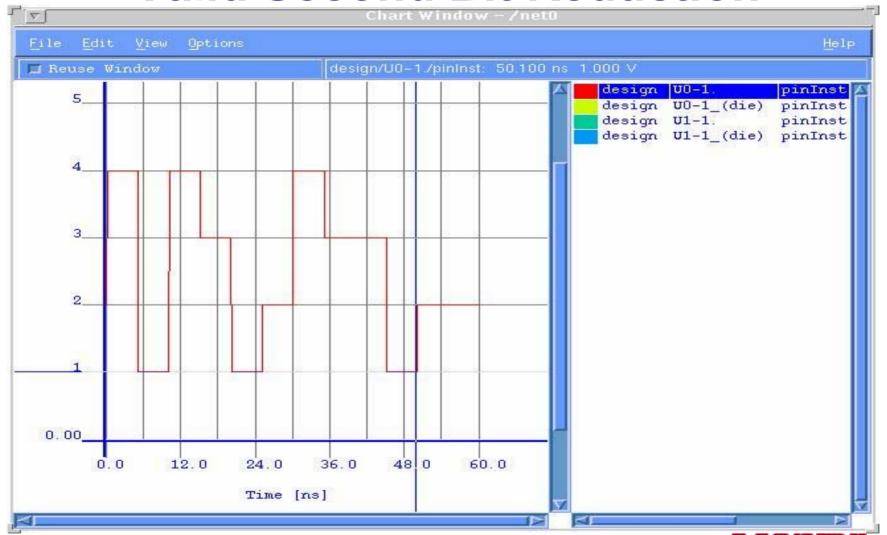
Driver	Rise-on	Rise-off	Fall-on	Fall-off
D_50	0ns	na	0ns	na
D_100	na	1ns	na	1ns

Driver	Rise-on	Rise-off	Fall-on	Fall-off
D_50	0ns	na	0ns	na
D_100	1ns	4ns	na	na

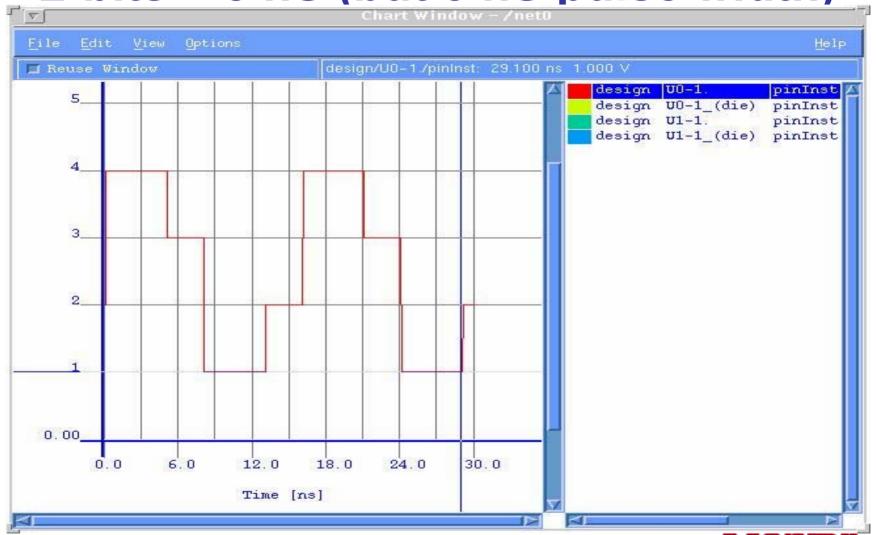
Driver	Rise-on	Rise-off	Fall-on	Fall-off
D_50	0ns	na	0ns	na
D_100	4ns	1ns	na	na

SCSI Driver Example Using Reduced Strength Driver

Driver	Rise-on	Rise-off	Fall-on	Fall-off
D_50	0ns	na	0ns	na
D_100	na	5ns	na	5ns


Driver	Rise-on	Rise-off	Fall-on	Fall-off
D_50	0	na	0ns	na
D_100	0	5ns	0	5ns

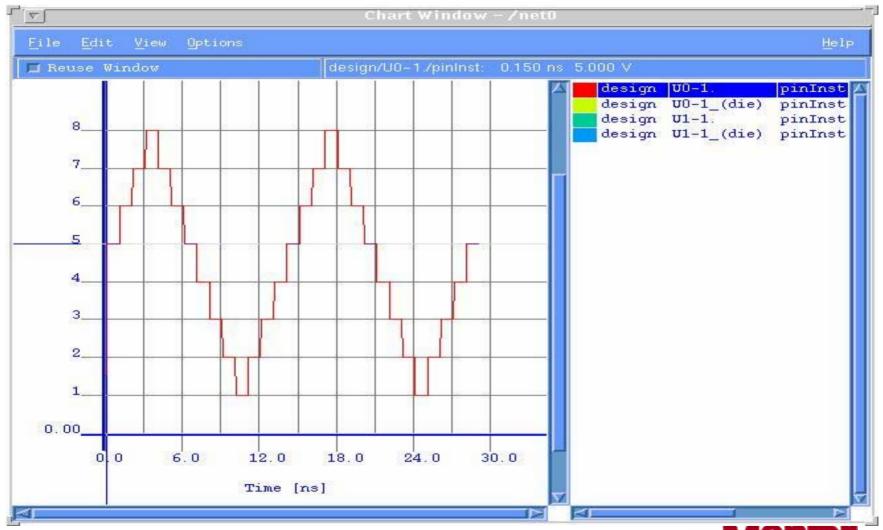
■ Two versions of the SCSI Driver


- Version 1 is legal IBIS next page
- Version 2 is not legal, but responds more cleanly to over-clocking. However the pulse widths are not made narrower and are wrong page after next.

Valid Second Bit Reduction

2-bits = 8 nS (but 5 nS pulse width)

Stair Step Waveform Showing Enhancement and Reduction


- Drivers (9 V)
 - **U0 25 Ohm Output**
 - U1 50 Ohm Open_drain and Open_source
 - U2 100 Ohm Open_drain and Open_source
 - Open_* used because of several transitions in "Rise_*" and "Fall_*" pulse
- Terminator 100 Ohm 9V, 100 Ohm Gnd
- 1 V to 8 V in 1 V Steps


```
min
                            typ
                                                                 max
                            9V
[Voltage range]
                                               NA
                                                                 NA
[Driver Schedule]
                      Rise on Rise off Fall_on Fall_off
   Model
U0
                                 7n
                                          NA
                                                     NA
U1 UP
                      2n
                                 5n
                                          NA
                                                     NA
U1 DOWN
                      2n
                                 0 n
                                          NA
                                                     NA
U1 DOWN
                      7n
                                 5n
                                          NA
                                                    NA
U1 UP
                                NA
                                          2n
                      NA
                                                     0 n
U1 UP
                      NA
                                NA
                                          7n
                                                     5n
U1 DOWN
                      NA
                                          2n
                                                     5n
                                 NA
U2 UP
                                 2n
                                          NA
                                                     NA
                      1n
U2 UP
                      3n
                                 4 n
                                          NA
                                                     NA
U2 UP
                      5n
                                 6n
                                          NA
                                                     NA
U2 DOWN
                      1n
                                 0 n
                                          NA
                                                     NA
U2 DOWN
                      3n
                                 2n
                                          NA
                                                     NA
U2 DOWN
                      5n
                                 4 n
                                          NA
                                                     NA
U2 DOWN
                      7n
                                 6n
                                          NA
                                                     NA
U2 UP
                      NA
                                NA
                                          1n
                                                     0 n
U2 UP
                      NA
                                NA
                                          3n
                                                     2n
U2 UP
                      NA
                                NA
                                          5n
                                                     4 n
U2 UP
                      NA
                                NA
                                          7n
                                                     6n
U2 DOWN
                                          1n
                                                     2n
                      NA
                                NA
U2 DOWN
                      NA
                                NA
                                          3n
                                                     4 n
U2 DOWN
                      NA
                                 NA
                                          5n
                                                     6n
```


Pulse Width 7 nS, Period 14 nS

Driver Schedule Observations

- Existing Driver Schedule can be used for second bit reduction for SCSI applications for a given clock rate.
- Allowing another Driver Schedule mode produces some improvement, but produces other distortions. This improvement is not recommended.
- Driver Schedules with Open_* modes can be used for discrete pulse shaping.

