
116-March-2001

IBIS-X and the
IBIS Macro Language

Author: Stephen Peters
AV&T group, IBIS Vice-Chair
Edited by: Arpad Muranyi

Intel Corporation

216-March-2001

Background

• Current IBIS up against limits
– Description lagging new technologies
– Limited support for return path modeling
– Limited support for coupled package modeling
– No support on horizon for receiver models
– No support for frequency domain analysis

• IBIS-X Goal: provide the path to a ‘next
generation’ I/O buffer description language.

316-March-2001

IBIS-X requirements

• Keep the good stuff
– standardized description
– protect IP
– document SI parameters
– continue support for board level (behavioral) simulators

• Expand format, structure to fix problem areas
– expandability, flexibility (add nodal connectivity, get away

from fixed assumptions and keywords)
– enable accurate modeling of SSO, power delivery and

package effects
– support behavioral receivers
– enable generalized equations, S-parameters, etc.

416-March-2001

IBIS-X Approach

• Nodal descriptions are a necessity
– die interconnect (pin - pad - buffer) descriptions
– power delivery and pin-pin coupling
– connections for black boxes

• Macro language for creating new model prototypes
– flexible, extendable, allows existing IBIS models to be reused
– enables a wide variety of descriptions

• Bottom Line: user will have the ability to create
his/her own custom buffer (model_type), and specify a
package model in a standard format.

516-March-2001

Overview of Model Type Creation

• User creates a new model type using the [Define]
keyword

• User describes new type using macro language
– interconnect L/R/C elements and sources, data/values are

parameterized
– programming flow statements/operators available
– special statements for trigger events, etc.

• User then instantiates model in .ibs file ([Model]
statement) and supplies data for that instance, just as
before.

616-March-2001

Example (define the model)

Vsource

Rsource
Pin

+

T1

gnd

[Define Model] simple_driver (gnd, pin, control)
node T1
Vsource (T1 gnd) V=Rise[T-TR] || Fall[T-TF]
Rsource (pin T1) R=Rsrc[T-TR] || Rsrc[T-TF]
trigger TR (Logic(control) == 1)
trigger TF (Logic(control) == 0)
[End Define Model]

716-March-2001

Example (supply the data)

[Model] driver_1
Model_type simple_driver
[Rise]
0n 0
2n 1
5n 4
7 5

[Fall]
0n 5
2n 4
5n 1
7n 0

[Rsrc]
0n 7
2n 1k
3.5 100k
5n 1k
7n 5

816-March-2001

Basic Elements

SPICE Compatible
Resistor (R) (defines v = f(I,t); r=constant or f(t))
Capacitor (C) (defines q = f(v,t); c=constant or f(t))
Inductor (L) (defines flux = f(I,t); L= constant or f(t))
VCVS (E) (defines Vout = f(Vin,t))
VCCS (G) (defines Iout = f(Vin,t))
Isource (I) (defines fixed I or I= f(t))
Vsource (V) (defines fixed V or V= f(t))
Diode (D) (basic diode, subset of Spice parameters)
Subckt (X) (used for submodel, driver schedule)

Extended (some, but not all SPICE support)
Voltage controlled Resistance (VCR) (defines R = f(v))
Voltage controlled Admittance (VCG) (defines Y = f(v))
Voltage controlled Cap (VCCAP) (defines C = f(v))
Uncoupled transmission lines
Coupled transmission lines

916-March-2001

Basic Elements (cont.)

Syntax for elements should be familiar
<type> <instance name> (<nodes>) <value>
Example: Resistor R12 (2 4) R=10k

Values can take on several forms
simple value (10k)
scalar symbolic value (C_comp)
built-in symbolic value (VT)

uses the value of an internal variable, such as TIME
1D table symbolic (I=Pullup[V])
2D table symbolic (I=Pullup[V,T] or I=Series_mosfet[Vc,Vo])
Expressions can be made of combinations of above.

Operators are: +, -, *, || with usual bindings.

|| is evaluated as in Perl, allows for optional
data sets / keywords

Example : Vx (Vcc gnd) V=(Pullup Reference) ||
(Voltage Range)

1016-March-2001

Extended Blocks Beyond Spice

Needed now for Supporting drivers & receiver blocks
Driver (a complex device for backward compatibility)
Reshape (generates a digital pulse, reshaped from it’s input)
Delay (out = in, but delayed)
Voltage Controlled Delay

Possible (likely) extensions for future work
Behavioral voltage source (“B” element)

Behavioral current source (“B” element)

Integrator block
Differentiator block
Behavioral integrator
Behavioral differentiator

1116-March-2001

.Extended (.dot) Elements

Model Creation/Functionality Related
trigger (time value expression) – generates a trigger event when
condition is met
node – declares node name to be local
inherit – inherit properties of another model or base structure

Debug/Visibility Related
export – list of local symbols that can be made visible to the user

alarm (time value expression) – notifies user when some event
happens, used for error checking and the like
assert (static logic expression) – check for a condition to be true,
again for error checking

1216-March-2001

More Extended (.dot) Elements

Programming Flow
if (static logic expression)

else if (static logic expression)
end if

select
case
end select

foreach (index) in (pointer to data structure) – sets up
an array of objects tied to a keyword. Used to
implement driver schedule and submodel functionality

1316-March-2001

Equation Based Modeling

• General equations (Berkley B-element) not
supported directly in initial release
– Looking for quick implementation/adoption using

existing technology.
– Equation support planned for future release based

on feedback
– However, no reason one can’t turn equations into

tables which are supported.
• Nothing in IBIS-ML prevents the support of

equation based modeling (i.e. support for
Berkley B-element) in future release.

1416-March-2001

Current Status

• IBIS 3.2 has been implemented in IBIS-ML
• Working group meets bi-weekly to work on

writing formal specification(s)
– Overall IBIS-X specification
– Library guide
– Programmers Language Reference Manual

• Much work remains on die interconnect section
– Coordinating with IBIS connector spec
– Need for additional volunteers

