Signal Integrity/ Power Integrity Co-analysis for I/O Interfaces

Myoung Joon Choi, Vishram S. Pandit Intel Corp. IBIS Summit at DAC July 28, 2009

Acknowledgements: Michael Mirmak, Woong Hwan Ryu, Joe Salmon

Special thanks to Wei-hsing Huang for SI-PI buffer model

Copyright © 2009, Intel Corporation. All rights reserved.

Outline

- SI-PI Motivation, Requirement
- Overview
- Buffer Requirement
- SI-PI Co-simulation Methodology
- Lab Correlation
- SI-PI Full Time Domain Simulation
 - Single Ended Signaling
 - Differential Signaling
- Conclusions

SI-PI Interaction

Motivation

What is SI-PI Co-sim?

- Conventional Analysis
 - SI-only: ISI, Xtalk
 - PI-only: PD noise
- SI-PI: System level simulation including SI and PI altogether
- Why SI-PI Co-sim? Need to save more margin?
 - Where? SSN, 3D coupling
 - System performance
 - Does SI-only or PI-only Simulation reflect my expectation?
 - PD to Signal coupling?
 - SSN
 - Referencing
 - PD to Signal cross-talk
 - PD impact on receiver eye, Jitter?

What do I need to run SI-PI?

Buffer model !

- Multiple buffer Switching simulation
- Accurate for SI & PI
- lcc(t)
- Package, PCB, Connector
 - 2, 2.5D, 3D model
 - Coupling between PD and SI
- On-die PDN model
 - Powergrid Cdie, Rdie

Outline

- SI-PI Motivation, Requirement
- Overview
- Buffer Requirement
- SI-PI Co-simulation Methodology
- Lab Correlation
- SI-PI Full Time Domain Simulation
 - Single Ended Signaling
 - Differential Signaling
- Conclusions

SI-PI Co-sim Overview

Outline

- SI-PI Motivation, Requirement
- Overview
- Buffer Requirement
- SI-PI Co-simulation Methodology
- Lab Correlation
- SI-PI Full Time Domain Simulation
 - Single Ended Signaling
 - Differential Signaling
- Conclusions

Buffer Behavioral Model

SI only

I/V and V/T characterization, C_comp**

- SI+PD
 - I/V and V/T characterization, C_comp**
 - Ability to accommodate PD level variation
 - Output timing/voltage variation based on PD noise

** C_comp(Freq, V) is not used here but recommended

Buffer Model

SI-PI behavioral model:

Work with existing IBIS model
Add ΔI1 and ΔI2 to account for difference between Xtor and Ibis;
-Verilog-A module: Table based
-Instead of using IBIS keywords - ISSO_PD, ISSO_PU
ΔI1 is f(Vccd, t, Vout)
-account for Icct difference
ΔI2 is f(Vccd, t, Vout)
-account for jitter/buffer strength difference;

Buffer Model

Conceptually, the generated model is like this..

- Has many ICCT data extracted at different conditions;
- Has many VPAD (VT/IV) data extracted at different conditions;
- Switches toggle dynamically during simulation based on V(N1~N3)

Outline

- SI-PI Motivation, Requirement
- Overview
- Buffer Requirement
- SI-PI Co-simulation Methodology
- Lab Correlation
- SI-PI Full Time Domain Simulation
 - Single Ended Signaling
 - Differential Signaling
- Conclusions

SI-PI Co-simulation Steps

- 1. Buffer model
- 2. On-die PDN Model
- 3. SI-PI EM Model
- 4. Deck Construction
- 5. Worst Case pattern identification
- 6. Full Time Domain Simulation Run
- 7. Response Decomposition
- 8. Sensitivity Analysis

SI+PD Model Generation

S parameter quality

S parameter preconditioning is key to successful SI/PD simulations
 Convergence: The TD solution need to converge (DC and AC)

- Tool Improvement
 - HSPICE 2009.03-SP1*, Sigrity PowerSI 9.0*, Ansoft HFSS 11*, Ansoft Siwave 4*.
- Passivity: Energy transferred cannot exceed energy stored
- Causality: Response cannot occur before the stimulus
- Singularity: Z response shall not go to infinity
- DC point: S parameters shall include DC point
- LF points: Tool needs to simulate LF points accurately.
- Reference Impedance: Zref for signal nets and power nets

Full Time Domain simulation of entire SI-PI

DDR Single Ended Signaling Example

17

Non-linear Impact?

WC pattern from PDA* [<u>1</u>,<u>2</u>]

- Used for full time domain Sim
- Doesn't match
 - WC eye from PDA
 - Full time domain Eye
- PDA Difficulty
 - Applying SSN
- SI: LTI, PI: LTI
- SI-PI
 - Somewhat non-linear
 - Superposition will have 0~20% error

Outline

- SI-PI Motivation, Requirement
- Overview
- Buffer Requirement
- SI-PI Co-simulation Methodology
- Lab Correlation
- SI-PI Full Time Domain Simulation
 - Single Ended Signaling
 - Differential Signaling
- Conclusions

<PDN Cdie Impact> Matched ~ within 10pS

20

Outline

- SI-PI Motivation, Requirement
- Overview
- Buffer Requirement
- SI-PI Co-simulation Methodology
- Lab Correlation
- SI-PI Full Time Domain Simulation
 - Single Ended Signaling (MB#1 & MB#2)
 - Differential Signaling
- Conclusions

Case: MB #1

Single Ended Signaling
 DDR Channel Performance

 Package Impact
 Cdie Impact
 MB Impact

 SI-PI Sim Result: Decision making aid

Y-Layer Pkg, MB#1, XnF/Ch

DDR Application: Full TD Sim.

<MB #1> Pkg #2 @ XnF/Ch - Pkg #1 @ XnF/Ch ~ 30p Pkg #2 @ YnF/Ch - Pkg #1 @ YnF/Ch ~ 10p

No Freebie! – Want to go to Pkg #1? Add more Cdie!

Case: MB #2

Single Ended Signaling
 DDR Channel Performance

 Package Impact
 Cdie Impact
 MB Impact

 SI-PI Sim Result: Decision making aid

Y-Layer Pkg, MB#2, XnF/Ch

DDR Application: Full TD Sim.

<MB #2>
Pkg #2 @ XnF/Ch - Pkg #1 @ XnF/Ch ~ 10p
Pkg #2 @ YnF/Ch - Pkg #1 @ YnF/Ch ~ 0p

No Freebie! – Want to go to Pkg #1? Add more Cdie!

Outline

- SI-PI Motivation, Requirement
- Overview
- Buffer Requirement
- SI-PI Co-simulation Methodology
- Lab Correlation
- SI-PI Full Time Domain Simulation
 - Single Ended Signaling (MB#1 & MB#2)
 - Differential Signaling
- Conclusions

Differential Signaling Application

- First evaluate the noise in the PD network
- Reduce the noise by changing the Z11
- Architectural controls for power on/ off
- Perform SI/PI co-simulations for jitter impact

No SSN

PD p2p: 1.2mV vs 67mV

SSN: 16TX & 16 RX

Differential FD and TD

- For this Z11 Cdie = C1, Rdie = R1
- Fr = 0.184 Ω at 179 MHz
- Solution Z=16 m Ω at 2.5 GHz

Power-on droop (120 nS) and power-off bounce(200 nS) depends on Resonance

- Ringing \rightarrow Z11 at 179 MHz
- Amplitude 77mV \rightarrow Z11 of 0.184 m Ω
- Steady state 32 mV corresponds to 16 mΩ Z11@2.5 GHz

Effect of higher Rdie

- For this Z11 Cdie = C1, Rdie = R2
- Z11@Fr = reduced from 0.184 Ω to 0.128 Ω
- Z11@2.5 GHz=Increased 16 mΩ to 30 mΩ

- Droop/ Bounce reduced to 65 mV
 - Steady state increased to 54 mV

Architectural Controls

Architectural controls: <u>Control #1</u> reduces the initial droop More architectural controls <u>Control #2</u> reduces noise further

Differential Signaling Application No additional SSN (Icc(t)) 16TX+16RX+Clk

Jitter: ~+10pS with Icc(t)

Conclusions

• SI / PI co-analysis methodology established to determine the performance impact due to Power Integrity

- Quality S parameters and accurate buffer model that predicts the PD behavior is required.
- Single ended and differential system (die, pkg, board) modeled and full time simulations performed

• Timing variations due to different elements are studied.

• SI/ PI analysis is increasingly becoming important for system optimization

References

http://books.google.com/books?id=AB2DHvhSHpsC&pg=PA594&lpg=PA594&dq=peak+distortion+analysis&source=bl&ots=uhp7nY4o3v& sig=1Tn5YDSJ1gmej488rzyuu1o5L9Y&hl=en&ei=8V9pSs_0BITEsQPhx4yWBQ&sa=X&oi=book_result&ct=result&resnum=6

[1]

0

http://download.intel.com/education/highered/signal/ELCT865/Class2_15_16_Peak_Distortion_Analysis.ppt

16 TX lcc(t) + 16 RX lcc(t) + TX buffers

72 mV of peak-to-peak with 240 MHz resonance coming from Icc(t)

SI-PI Co-simulation Overview

<Model Preparation>

- 1. Buffer Model
 - Can it accommodate PD variation?
- 2. On-die PDN Model
 - Can it handle SSN?
- 3. 2~3D Model: Package, PCB, Connectors
 - Can it capture PD to Signal coupling?
 - Can it capture EM impact?

Case: MB #1

Single Ended Signaling
 DDR Channel Performance

 Package Impact
 Cdie Impact
 MB Impact

 SI-PI Sim Result: Decision making aid

Y-Layer Pkg, MB#1, XnF/Ch

Is may be claimed as the property of others

Case: MB #2

Single Ended Signaling
 DDR Channel Performance

 Package Impact
 Cdie Impact
 MB Impact

 SI-PI Sim Result: Decision making aid

Y-Layer Pkg, MB#2, XnF/Ch

X-Layer Pkg, MB#2, YnF/Ch

SI-PI Co-sim, Co-analysis: Why?

EMI, EMC, 2nd Order Impact

Signal Integrity

Power Integrity

Low power, Low cost, Higher freq.

Voltage Transfer/Gain for ISI node

*Other names and brands may be claimed as the property of others

Voltage Transfer/Gain for Xtalk Node

Whole Channel

*Other names and brands may be claimed as the property of others

PD2Sig Coupling - Z

Whole Channel

PD2Sig Coupling Mechanism: Via, transition <=Major

*Other names and brands may be claimed as the property of others

PDA* WC eye EX

PDA* WC Eye Ex

Measurement Setup

Frequency Domain Response PDN

Time Domain Response

Current

Noise

Single Ended System

Inter-domain Transfer Function Ex

189

58

689

