

Model Connection Protocols for Chip-Package-Board System-level Analysis

IBIS Summit Design Automation Conference San Francisco, CA, USA July 28, 2009

Brad Brim Sigrity bradb@sigrity.com

Agenda

- Discuss concepts related to electrical model connectivity for chip/package/board system-level analysis
- Review existing solutions
 - no standards exist
 - some existing solution specifications are under NDA
 - An example protocol specification and physical example
- Observations

NOTE:

 The Sigrity model connection protocol discussed in this presentation is not being proposed as a standard, merely as an example of an existing solution created in reaction to short term need and lack of existing standard protocols.

The challenge

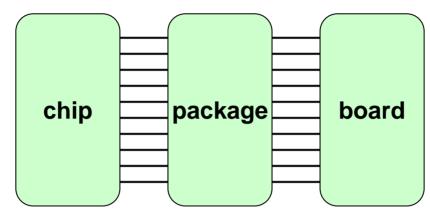
Assume I have ...

- a chip/package/board system with hundreds or thousands of physical connections (pins)
- individual electrical models for each chip, package and board
 - I did not generate each of these models myself, therefore I do not have full knowledge of the pin mapping information for each model.

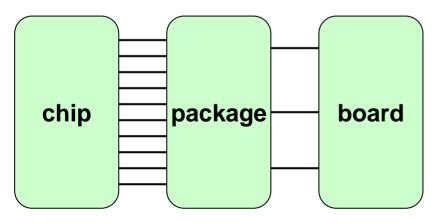
How do I ...

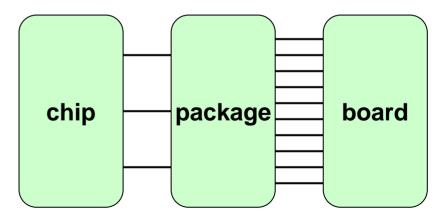
- 1. know which pins of one model to connect to the pins of another model?
- 2. reliably and in reasonable time connect these models in a netlist or a schematic?

Requirements


- Chip/package/board systems have many physical connections (pins)
 - chip-package boundary ≈ 100 5000
 package-board boundary ≈ 100 2000
- Not all electrical models can have pin-level resolution
 - models may be too large to compute, store, etc.
 - difficult to connect in EDA tools
- Adequate modeling may not be possible with net-level resolution
 - especially, if this low resolution is applied throughout the entire system
 - NOTE: "net-level resolution" groups all pins for each net at a domain boundary

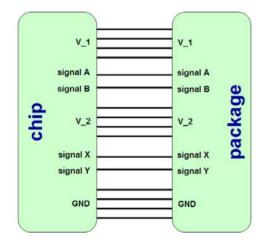
Support is required for


- arbitrarily pin-grouped models
- automated connection amongst models in EDA tools

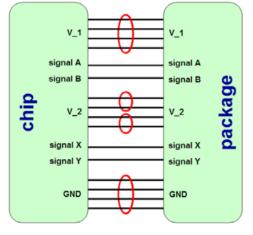

System Analysis

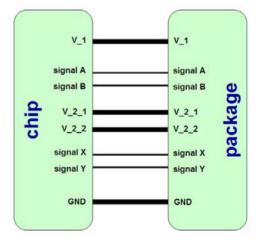
Physical connectivity

Chip-centric model abstraction



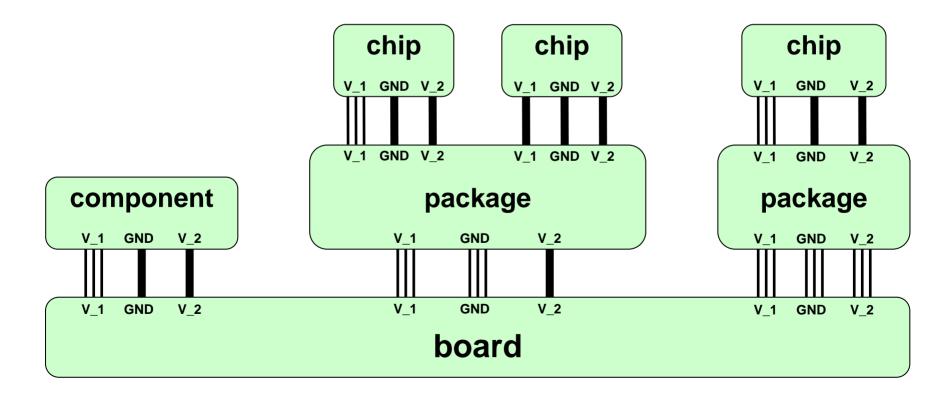
Board-centric model abstraction




System Analysis

 A bit more detailed view of electrical model resolution through pin grouping, for one domain boundary

pin grouping


decreasing model resolution

System Analysis

modern system designs requires various levels of model resolution throughout the system, with pin-level, net-level and arbitrarily grouped pins applied to the same component

Existing Model Connection Protocols for Chip/Package/Board Analysis

Sigrity MCP (Model Connection Protocol)

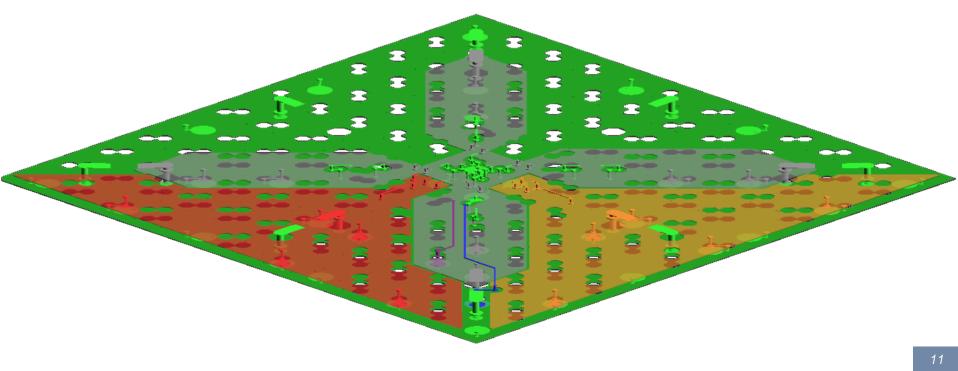
- defined by Sigrity
 - publicly available definition
- objective to support chip/package/board system analysis
- presently Version 1.0
 - 1.1 available soon with user-requested pin locations

Apache CPP

- defined by Apache
 - definition covered under NDA
- Implemented as "headers"
- Contained within model-native comment lines
 - model could be either subcircuit or data file

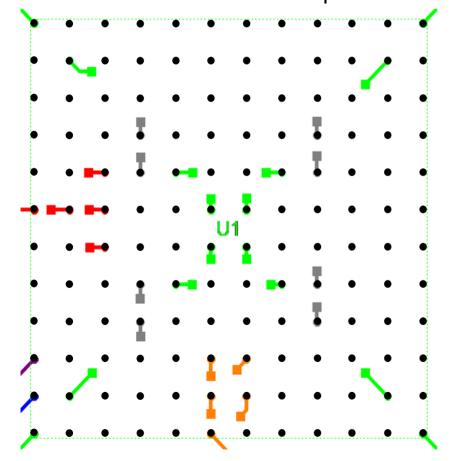
A Typical Model Connection Protocol (Sigrity MCP)

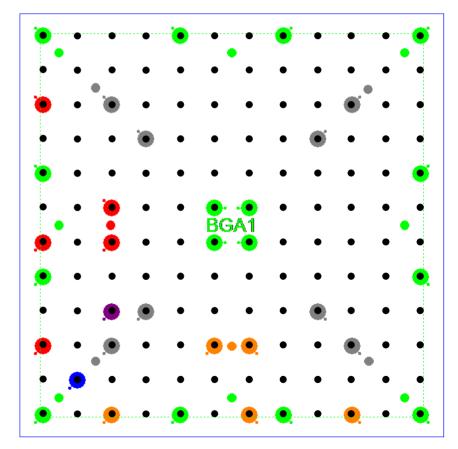
*	[MCP Begin]								
*	[MCP Ver] 1.1								
*	[Structure Type] {DIE PKG PCB}								
*	[MCP Source] source text								
*	[Coordinate Unit] <i>unit</i>								
*	[Connection] connectionName partName numberPhysicalPins								
*	[Connection Type] {DIE PKG PCB }								
*	[Power Nets]								
*	pinName	modelNodeName	netName	X	У				
*	•••								
*	pinName	modelNodeName	netName	X	У				
*	[Ground Nets]								
*	pinName	modelNodeName	netName	X	У				
*	•••								
*	pinName	modelNodeName	netName	X	У				
*	[Signal Nets]								
*	pinName	modelNodeName	netName	X	У				
*	•••								
*	pinName	modelNodeName	netName	X	У				
*	[MCP End]								


A Typical Model Connection Protocol

- Only one instance of [Structure Type]
- Multiple instances of [Connection] are possible
 - for a single-die package there will be one die-type connection and one pcb-type connection
 - for a pcb there may be many package type connections
 - for a multi-die SiP package there may be multiple die-type connections
- Only one instance of [Connection Type] per [Connection]
- For power integrity applications there may be no signal nets in the model
- Not all physical pins must be documented, only those included in the electrical model
 - For power integrity applications there may be no signal nets
 - For Touchstone data files there may only be signal nets
 - the reference terminal is implicit for the data file
 - For SPICE subcircuits there are likely grounds net but maybe no power nets
 - the reference terminal must be explicit

A Physical Example


- a few nets in a small 4-layer flipchip BGA package (so the MCP sections fin on a single page)
 - 3 power nets
 - 1 ground net
 - 2 signal nets



12-by-12 bump and ball arrays (for active nets)

die-side solder bumps

board-side solder balls

Model Resolution

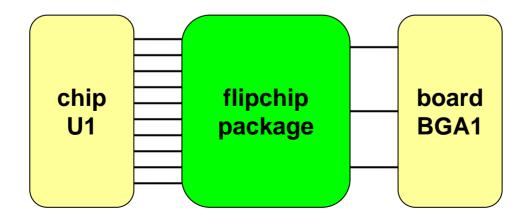
- pin-level at the chip-package boundary
 - 36 physical pins 36 electrical nodes
 - 18 power nodes -
 - 16 ground nodes -
 - 2 signal nodes -
- net-level at the package-board boundary

-

-

- 36 physical pins
 - 3 power nodes
 - 1 ground nodes -
 - 2 signal nodes

Net_1, Net_2


- 6 electrical nodes
- 1 VDD_1, 1 VDD_4, 1 VDDcore

5 VDD_1, 5 VDD_4, 8 VDDcore

1 VSS

16 VSS

Net_1, Net_2

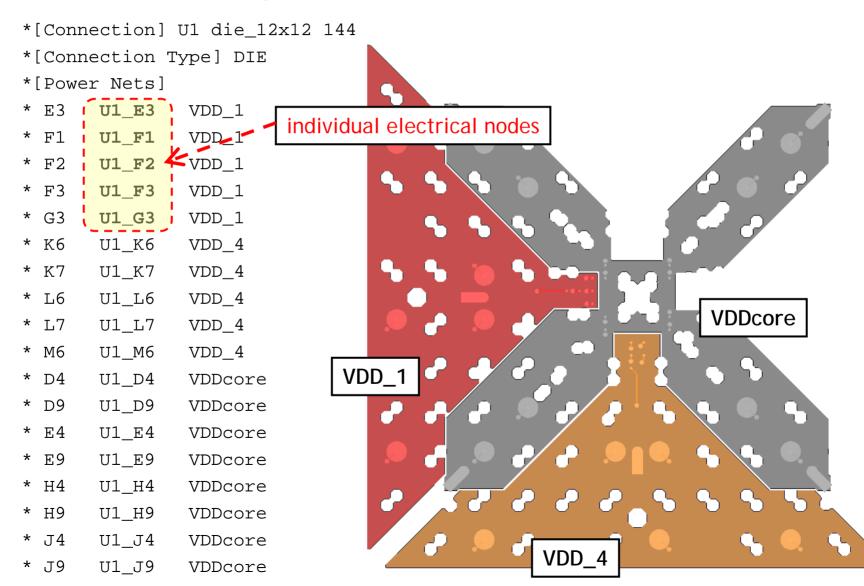
Model Extraction Setup

die-side setup for pin-level model extraction

Simulation Setup -> Simulation Type			×
Simulation Setup -> Simulation Type Model Extraction O Net-Based Electrical Performance Assessment O Signal Net Impedance and Coupling O Power/Ground Net Loop Inductance O Power/Ground Per Pin Resistance and Inductance	Layer Circuit Name Signal \$M1 U1 Signal \$M4 BGA1		Port Reference Reference Net: VSS OUse Reference Net OUse Reference Node OUse Reference Element Element ID: (0, 0) Pin Groups: 1 X 1 ~C
From die-side O From board-side OK Cancel			

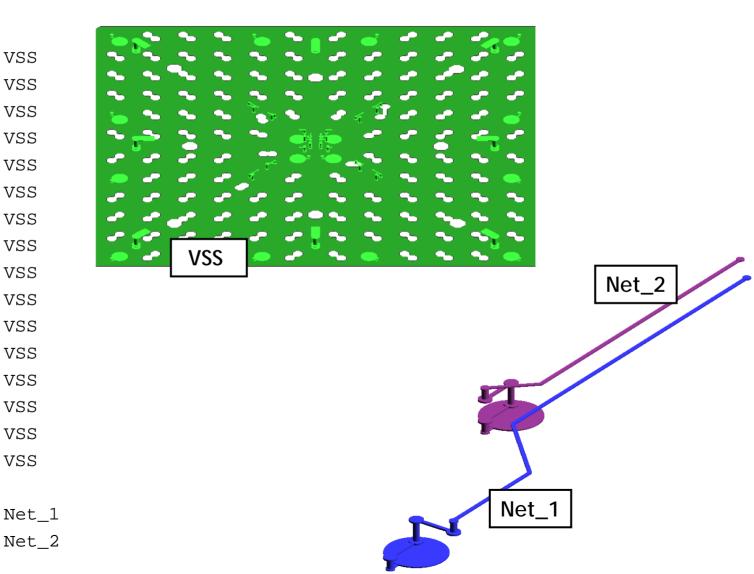
- board-side setup for net-based model extraction
 - equivalent to pin-level model extraction with 1-by-1 grid-based pin grouping

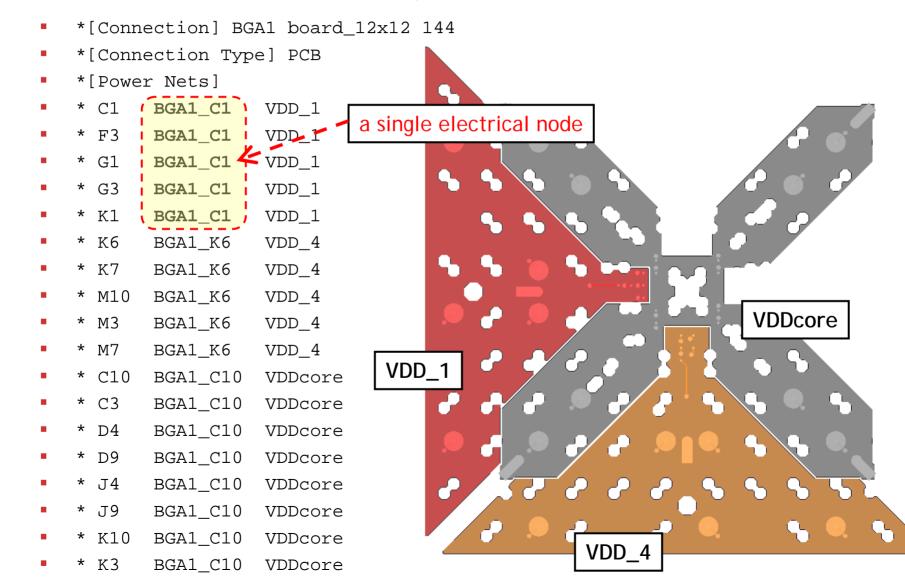
Model Extraction O Net-Based Pin-Based Electrical Performance Assessment O Signal Net Impedance and Coupling O Power/Ground Net Loop Inductance O Power/Ground Per Pin Resistance and Inductance O From die-side O From board-side	Layer Signal\$M1 Signal\$M4	Circuit Name U1 BGA1	Port Reference Reference Net: VSS VUse Reference Node OUse Reference Element Element ID: (0, 0) Pin Groups: 1 X 1 ~©
--	-----------------------------------	----------------------------	---



A SPICE circuit with MCP header (a mixed pin-level/net-level model)

```
.SUBCKT FlipChip pkg SPICE
  U1 E3 U1 F1 U1 F2 U1 F3 U1 G3
+
  U1 K6 U1 K7 U1 L6 U1 L7 U1 M6
+
+ U1 D4 U1 D9 U1 E4 U1 E9 U1 H4 U1 H9 U1 J4 U1 J9
+ U1 A1 U1 A12 U1 B11 U1 B2 U1 E5 U1 E8 U1 F7 U1 G6
+ U1 G7 U1 H5 U1 H8 U1 L11 U1 L2 U1 M1 U1 M12 U1 F6
+ U1 L1 U1 K1
  BGA1 C1 BGA1 K6 BGA1 C10 BGA1 A1 BGA1 L2 BGA1 J3
+
*
* The following is the Sigrity MCP Section
*[MCP Begin]
*[MCP Ver] 1.0
*[Structure Type] PKG
*[MCP Source] Sigrity XtractIM 3.0.2.07061 7/18/2009
```



A SPICE circuit with MCP header (a pin-level die-side connection)


A SPICE circuit with MCP header (a pin-level die-side connection)

*[Ground Nets]						
*	A1	U1_A1	VSS			
*	A12	U1_A12	VSS			
*	B11	U1_B11	VSS			
*	В2	U1_B2	VSS			
*	E5	U1_E5	VSS			
*	E8	U1_E8	VSS			
*	F7	U1_F7	VSS			
*	G6	U1_G6	VSS			
*	G7	U1_G7	VSS			
*	Н5	U1_H5	VSS			
*	Н8	U1_H8	VSS			
*	L11	U1_L11	VSS			
*	L2	U1_L2	VSS			
*	Ml	U1_M1	VSS			
*	M12	U1_M12	VSS			
*	Fб	U1_F6	VSS			
*[Signal Nets]						
*	L1	U1_L1	Net			
*	Kl	U1_K1	Net			

A SPICE circuit with MCP header (a net-base pcb-side connection)

A SPICE circuit with MCP header (a net-level pcb-side connection)

- *[Ground Nets]
- * A1 BGA1_A1
 * A12 BGA1_A1
 * A5 BGA1_A1
 * A8 BGA1_A1
 * E1 BGA1_A1
 * E12 BGA1_A1

BGA1 A1

BGA1 A1

BGA1 A1

BGA1_A1

BGA1_A1

BGA1 A1

BGA1_A1

BGA1_A1

BGA1_A1

BGA1_A1

BGA1 L2

BGA1 J3

*[Signal Nets]

*[MCP End]

Fб

F7

G7

* G6

* H1

* M1

* M8

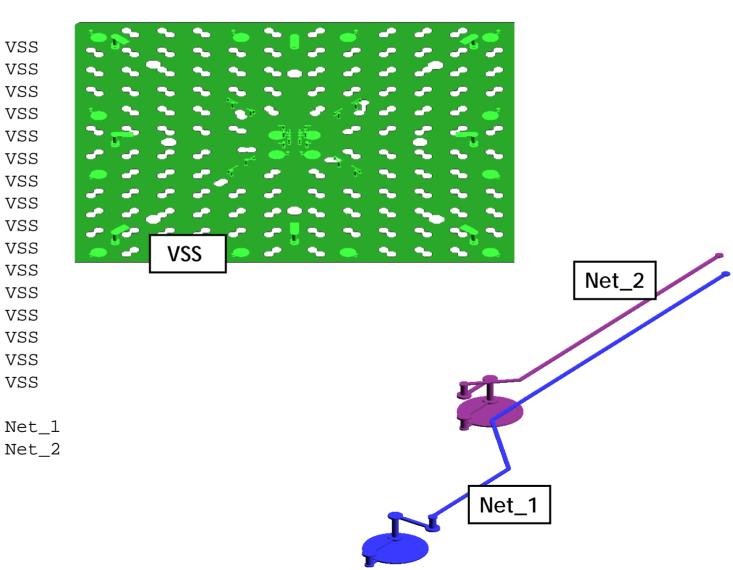
* L2

* J3

*

*

* H12

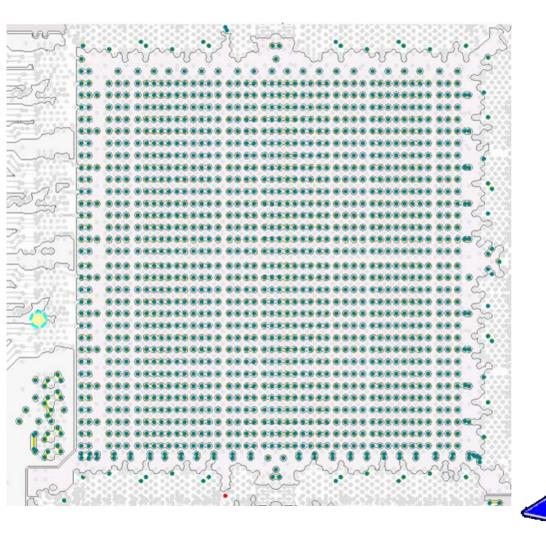

* M12

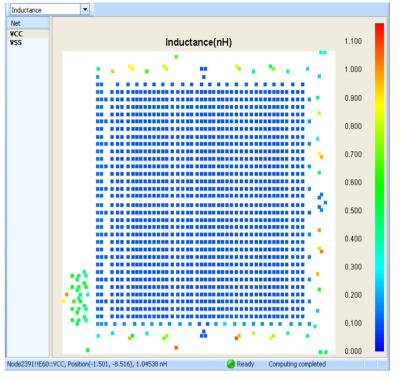
М5

*


*

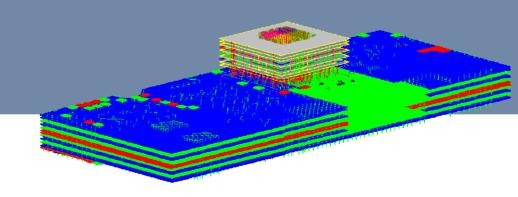
*




A SPICE circuit with MCP header

A Typical Package (*one power net*)

3D inductance map



Observations

- Chip/package/board designs may have thousands of pins
- Chip/package/board system analysis requires
 - user-definable model resolution
 - automated connection support for EDA tools
- Circuit and data models are commonly applied
 - both should be supported by any connection protocol
- Model connection protocols are much more than simply "port names"
- Proprietary model connection protocols are currently being applied
- An industry standard model connection protocol should be defined
 - user and EDA vendor participation will be required to agree on a standard
 - active participation by more than a few individuals will be required

Thank You!

