

Status Report IBIS 4.1 Macro Working Group

IBIS Open Forum Summit July 25, 2006

presented by Arpad Muranyi, Intel

IBIS-Macro Working Group

Intel - Arpad Muranyi Cisco - Mike LaBonte, Todd Westerhoff IBM – Joe Abler Sigrity - Sam Chitwood Teraspeed - Scott McMorrow, Bob Ross Cadence – Lance Wang, Ken Willis Mentor Graphics - Ian Dodd NC State University - Paul Fernando SiSoft - Barry Katz, Walter Kat TI – Richard Ward

Agenda

- IBIS-Macro group history
- IBIS-Macro library status
- Serial link design issues
- Phase 1 / Phase 2
- Requirements Definition
- Encryption
- Algorithmic Modeling
- AMS investigations
 - function library development
- API investigations
 - the evolution of IBIS
- Cadence proposal
- Current status

IBIS-Macro Group History

- Formed in 2005 to drive IBIS support for advanced device technologies
- Original goals:
 - -leverage existing skills
 - most model developers are familiar with SPICE-style macro modeling
 - speed EDA/semiconductor adoption of advanced behavioral modeling techniques
 - multi-simulator support
 - same as original IBIS, tool-independent models

IBIS-Macro Library Status

- Developed library of standard building blocks in VHDL-AMS and Verilog-A
 - can be used in a SPICE style (netlist) fashion to build macro models for more complicated buffer models

Developed automatic model translation utility

- extracts data from IBIS file for use with the "IBIS buffer" building blocks of the library
- Created templates for several common model types
- Current released library version: 1.1
 - www.eda.org/pub/ibis/macromodel wip/
- Further development waiting on testing and feedback from user community

Serial Link Design Issues

- Discussions with SERDES vendors revealed next generation devices require more complex models than possible with the current building block library:
 - receiver decision feedback equalization (DFE) circuitry
 - clock recovery (CDR) circuits and associated algorithms
 - complex driver models with arbitrary number of taps

Phase 1 / Phase 2

- We decided complex SERDES devices required another level of modeling capability
 - Phase 1: existing building block library, suitable for modeling drivers with a small numbers of fixed taps
 - Phase 2: new strategy (TBD) for modeling multi-tap drivers, receiver DFE and CDR circuits

Requirements Definition

- Multi-EDA simulator support
- Multi-silicon vendor support
- Supports modeling at "algorithmic" level
- Reasonably compatible with silicon vendor SERDES design processes

-ensures models will be timely and accurate

Encryption

- If driver/receiver algorithms are modeled and distributed, IP protection must be assured
- Encryption may be the only viable solution for protecting algorithm source code

- are compiled code models safe enough to protect IP?

Discussed EE Times article on Synplicity's open IP encryption scheme

http://eetimes.com/news/design/showArticle.jhtml?articleID=189500419

 Discussed encryption related work in other workgroups

- Accellera, IEEE

 Seems that there is an emerging solution which should be adopted by the IBIS Open Forum

Algorithmic Modeling

- DFE and CDR circuits are normally designed and validated at the "algorithmic" level by semiconductor vendors
- In practice, the SERDES receiver input buffer separates the channel behavior from the receiver input circuit
- Input signal processing can be thought of as a DSP case

AMS Investigations

- Can AMS effectively be used to model DFE and CDR behavior?
- TI actively investigating with help from Gary Pratt of Mentor
- Will simulator performance be acceptable for the simulation lengths required?
- Will semiconductor vendors be willing to create AMS models?
 - compatibility with internal design libraries and methodologies using Matlab, C/C++ etc... is a major factor
- No conclusions yet

API Investigations

• Is there a need for an API, more flexibility in IBIS?

- original IBIS assumes algorithms in tools (inflexible)
- IBIS 4.1 adds languages (*-AMS) for flexibility (code your own algorithms), but there is no choice for other languages
- API: any language allowed, connect simulator with compiled code
- Cadence proposed a "simulator API" mechanism during our June 19 and July 11 meetings
- API allows compiled model code to be linked into the simulator

- does compiled code address IP protection issue?

Cadence Proposal

Cadence Proposal

Current Status

- We had a lot of discussion on encryption, but it seems that this will be taken care of by other workgroups
- We are currently discussing the API proposal
 - is it needed?
 - what should it include and look like
 - how could/should it be incorporated into the IBIS spec?
 - can we use [External Model] or [External Circuit] with modifications if necessary?
 - should we use other existing API interfaces, such as SystemC, etc...?
- Can higher level functions written in *-AMS in the macro library solve the problems?
 - a collection of functions similar to Matlab's toolboxes

For More Information

IBIS-Macro Website

-www.eda.org/pub/ibis/macromodel wip/

IBIS-Macro mail reflector

- -Mail to: ibis-macro-request@freelists.org
- Subject: subscribe
- IBIS-Macro mail archives
 - -www.freelists.org/archives/ibis-macro

