
Serdes Channel Simulation Algorithms
and Workflows Using IBIS AMI Models

James Zhou, QLogic Corp.

James.zhou@qlogic.com

IBIS Summit at DesignCon

Santa Clara, CA

January 31, 2013
1

AMI Reference Flow – Brief History

• BIRD 104.1, (10/2007)
– One of the earlier public proposals of IBIS-AMI

• BIRD 107.1, and IBIS Specification 5.0, (05/2008,
08/2008)
– Introduced Use_Init_Output to solve the double counting

issue when filtering exist in both AMI_Init and
AMI_Getwave functions

– Added dedicated section to describe reference flow

• BIRD 120.1 (04/2011)
– Deprecated Use_Init_Output
– Revised reference flow section to separate statistical and

time-domain flows
– Corrected inconsistencies in IBIS 5.0 flow for NLTV systems

2

What Are AMI Reference Flows ?

• A standardized workflow is a process to
– analyze input data
– use prescribed methods/functions
– achieve a unique result true to the system

• AMI References flows are processes to analyze
– channel performance using statistical and time-domain

methods
– Tx/Rx behaviors contained in *.dll
– System configurations in *.ami
– Interface between algorithmic and analog blocks

3

input Methods
functions

output

config

IBIS AMI FAQ

What are the definitions of AMI_Init,
AMI_Getwave input/output quantities?

What is the content and format of AMI analog
model?

How many cases are there and, how to resolve
AMI reference flows for various combinations of
Tx/Rx Init_Returns_Impulse, GetWave_Exists?

What are the assumptions made in the IBIS-AMI
models and reference flows ?

What are the mandatory vs. optional features of
AMI flow ?

4

x(t)

IBIS AMI – Basic Concepts

• x(t) is input, y(t) is output
• All channel interconnects are cascaded into a single block,

which impulse response is hAC(t)
• Tx/Rx black box (algorithmic) characteristics are provided

by two functions of _Init() and _GetWave() (hTEI(t), gTEG(t),
hREI(t), gTEG(t))

• _Init() functions are for LTI systems and _GetWave()
functions are for NLTV systems

• The _GetWave() functions are the only two black boxes in
the system

5

TX EQ
TX

Analog
TX pkg

Channel
Interconnect

RX pkg
RX

Analog
RX EQ,

CDR

hTEI(t)
gTEG()

hAC(t)
hREI(t)
gREG()

y(t)

y(t) x(t)

System Equations

• Based on signals and systems theory 101, the system
equations are derived readily and shown above

• Now that we have the system equations, what’s next?

6

Case 1: y(t) = hREI(t)*hAC(t)*hTEI(t)*x(t)

Case 4: y(t) = gREG[hAC(t)*gTEG[x(t)]]

Case 3: y(t) = hREI(t)*hAC(t)*gTEG[x(t)]

Case 2: y(t) = gREG[hAC(t)*hTEI(t)*x(t)]

hTEI(t)
gTEG()

hAC(t)
hREI(t)
gREG()

y(t) x(t)

x(t)

Reference Flow – IBIS 5.0

TX EQ
TX

Analog
TX pkg

Channel
Interconnect

RX pkg
RX

Analog
RX EQ,

CDR

hTEI(t)
gTEG()

hAC(t)
hREI(t)
gREG()

y(t)

y(t) x(t)

Step 1: h1(t) = hAC(t)

Step 2a: h2a(t) = AMI_InitTX[h1(t)] = hTEI(t)*hAC(t) (Tx Use_Init_Output = TRUE)
Step 2b: h2b(t) = h1(t) = hAC(t) (Tx Use_Init_Output = FALSE)

Step 3a: h3a(t) = AMI_InitRX[h2(t)] = hREI(t)*h2(t) (Rx Use_Init_Output = TRUE)
Step 3b: h3b(t) = h2(t) (Rx Use_Init_Output = FALSE)

Step 4: h4(t) = h3(t) *b(t)*p(t)

7

Step 5a: h5a(t) = AMI_GetWaveTX[h4(t)] (Tx GetWave_Exists = TRUE)
Step 5b: h5b(t) = h4(t) (Tx GetWave_Exists = FALSE)

Step 7: y(t) = h6(t)

Step 6a: h6a(t) = AMI_GetWaveRX[h5(t)] (Rx GetWave_Exists = TRUE)
Step 6b: h6b(t) = h5(t) (Rx GetWave_Exists = FALSE)

Reference Flow Diagram – IBIS 5.0

• Two-phased process. Output of Init phase convolves with
stimulus to become the input of GetWave phase.

• Use_Init_Output, Init_Returns_Impulse and (Tx/Rx)
GetWave_Exists parameters are defined to guide EDA tools
on how to process data

h1(t) = hAC(t)

h2(t)=AMI_InitTX[h1(t)]

h3(t)=AMI_InitRX[h2(t)]

h4(t) = h3(t)*x(t)

h5(t)=AMI_GetWaveTX[h4(t)]

y(t) = h6(t)

h6(t)=AMI_GetWaveRX[h5(t)]

hAC(t) x(t)=b(t)*p(t)

8

Reference Flow Diagram – IBIS 5.0

• If Use_Init_Output = FALSE,
Init phase is bypassed

• Convolving x(t) directly with
hAC(t) without including the Tx
AMI block (Step 4) makes this
flow invalid for NLTV Tx AMI
block

h1(t) = hAC(t)

h2(t) = h1(t) = hAC(t)

h3(t) = h2(t) = hAC(t)

h4(t) = hAC(t)*x(t)

h5(t)=AMI_GetWaveTX[h4(t)]

y(t) = h6(t)

h6(t)=AMI_GetWaveRX[h5(t)]

hAC(t) x(t)=b(t)*p(t)
hTEI(t)
gTEG()

hAC(t)
hREI(t)
gREG()

y(t) x(t)

9

Observations

• hAC(t) is the cascaded LTI analog channel impulse
response

• b(t)*p(t) is the input waveform to Tx AMI block

• It is not possible to map this flow to system
equations relating output to input in a manner
that is consistent with signal processing principles

• Use_Init_Output directs the EDA tool how to
process AMI_Init output

• Init_Returns_Impulse indicates whether output
AMI_Init is modified

10

What is Double-Counting

• Tx and Rx models both attempt to “automatically optimize” channel
performance based on channel impulse response hAC(t). Without
knowing what each other is doing, one can easily out-smart the
other, causing the so-called double-counting phenomenon. A more
accurate term is mis-counting because the mis-calculation can go
both ways.

• The double-counting issue is also related to the fact that the
physical meaning of input and output variables of AMI_GetWave
calls are not clearly defined.

• Use_Init_Output was introduced to allow bypassing of AMI_Init
function calls by directly convolving the analog channel with
stimulus before calling AMI_GetWave functions.

• The reference flows become complicated when all combinations of
Use_Init_Output, Init_Returns_Impulse and GetWave_Exists must
be dealt with in a consistent manner.

11

Reference Flow – IBIS 5.1

Step 1: h1(t) = hAC(t)

Step 2: h2(t) = Tx_AMI_Init[h1(t)] = hTEI(t)*hAC(t)

Step 3: h3(t) = Rx_AMI_Init[h2(t)] = hREI(t)*hTEI(t)*hAC(t)

Step 4: h4(t) = x(t) = b(t)*p(t)

12

x(t) TX EQ
TX

Analog
TX pkg

Channel
Interconnect

RX pkg
RX

Analog
RX EQ,

CDR

hTEI(t)
gTEG()

hAC(t)
hREI(t)
gREG()

y(t)

y(t) x(t)

Step 5: h5(t) = gTEG[h4(t)]; (TxGE = TRUE)

Step 6a: h6a(t) = gREG[h1(t)*h5(t)]; (TxGE=TRUE;RxGE=TRUE)

Step 6b: h6b(t) = gREG[h2(t)*h5(t)]; (TxGE=FALSE;RxGE=TRUE)

Step 8: h8(t) = {h7a(t), h7b(t), h6c(t), h6d(t)}

Step 6c: h6c(t) = h3(t)*h4(t); (TxGE=FALSE;RxGE=FALSE)

Step 6d: h6d(t) = hREI(t)*h1(t)*h5(t); (TxGE=TRUE;RxGE=FALSE)

Step 7: h7a,b(t) = gREG[h6a,b(t)];

• [Note]: TxGE is TX GetWave_Exists; RxGE is RX GetWave_Exists

Reference Flow Diagram - Original

• Four possible combinations of Tx GetWave_Exists and Rx GetWave_Exists are:
FF,FT,TF and TT

h1(t) = hAC(t)

h2(t)=AMI_InitTX[h1(t)]

h6a= h1*h5

h3(t)=AMI_InitRX[h2(t)]

h4(t) = x(t)

h5(t) = gTEG[x(t)]

h7=gREG() Output

h6c= h3*h4 h6b= h2*h4

hREI(t) = h3/h2

h6d= hREI*h1*h5

TT FT FF TF

T*

13

Reference Flow Diagram – Expanded

• This is equivalent to reference flow on previous page but easier to identify
the four branches from start to finish

Input: h1(t) = hAC(t), h4(t) = x(t)

h2=hTEI*hAC

h3=hREI*h2

gTEG[x]

Output

h2*x

gREG[h2*x]

h3*x hREI=h3/h2

hREI*hAC*gTEG[x]

gTEG[x]

hAC*gTEG[x]

gREG{hAC*gTEG[x] }

h3=hREI*h2

h2=hTEI*hAC h2=hTEI*hAC

TT TF FF FT

14

Reference Flow Diagram – Consolidated

• Each branch contains four components of: (1) stimulus; (2)
Tx AMI; (3) analog channel; (4) Rx AMI

h1(t) = hAC(t) h4(t) = x(t)

Output

gREG[hAC*hTEI*x]

hREI*hAC*hTEI*x hREI*hAC*gTEG[x]

gREG{hAC*gTEG[x] }

TT TF FF FT

input

15

Block Diagram and Equations

• Four possible cases of Tx and Rx AMI system with analog channel in
between
– [Tx GetWave_Exists, Rx GetWave_Exists] = {FF,FT,TF,TT}

• “Init_Returns_Impulse = False” is a trivial special case for “Tx
AMI_Init = dirac delta function”. In the generalized system
equations, this special case is degenerate.

 16

hTEI() hAC(t) hREI()

y(t) x(t)

FF: y(t) = hREI(t)*hAC(t)*hTEI(t)*x(t)

hTEI() hAC(t) gREG()

gTEG() hAC(t) hREI()

gTEG() hAC(t) gREG() TT: y(t) = gREG[hAC(t)*gTEG[x(t)]]

TF: y(t) = hREI(t)*hAC(t)*gTEG[x(t)]

FT: y(t) = gREG[hAC(t)*hTEI(t)*x(t)]

System Equation Expansion

TX
Getwave
_Exists

RX
Getwave
_Exsits

Case

Equation Step #

False False 1 y(t) = hREI(t)*hAC(t)*hTEI(t)*x(t) 1,2,3,4, 6c

False True 2 y(t) = gREG[hAC(t)*hTEI(t)*x(t)] 1,2, 4, 6b,7

True False 3 y(t) = hREI(t)*hAC(t)*gTEG[x(t)] 1, 4,5,6d[*]

True True 4 y(t) = gREG[hAC(t)*gTEG[x(t)]] 1, 4,5,6a,7

• Steps 1 and 4 obtain external input variables. They are the
input nodes in the flow and are the only common
denominators of all branches.

• Steps 2,3,5,6[abcd] and 7 can be consolidated into one
step with four branches.

• [*] computation of hREI(t) requires h2(t) and h3(t)
17

Init_Returns_Impulse

18

TX Init_
Returns_
Impulse

TX
Getwave_
Exists

RX Init_
Returns_
Impulse

RX
Getwave_
Exists

TX Selected
Function

RX Selected
Function

Case # Comment

True True True True Getwave Getwave 4

True True True False Getwave Init 3

True True False True Getwave Getwave 4

True False True True Init Getwave 2

True False True False Init Init 1

True False False True Init Getwave 2

False True True True Getwave Getwave 4

False True True False Getwave Init 3

False True False True Getwave Getwave 4

• Out of 16 possible combinations, 9 valid combinations of TX and RX
Init_Returns_Impulse and Getwave_Exists are mapped to four unique
cases of TX and RX function call combinations [1-6]

Double Counting

• IBIS 5.1: “when the Tx AMI model contains an
AMI_GetWave function that performs a similar or better
equalization than the Tx AMI_Init function, there is a
possibility for “double-counting” the equalization effects in
the Tx executable model file. To allow for such models to
work correctly, the EDA tool can operate in one of several
ways, two of which are documented here:
– not utilize the Tx AMI_GetWave functionality, by treating the Tx

AMI model as if the Tx GetWave_Exists was False.”

• The root cause of “double counting” is to allow the models
to operate independently and freely beyond the true
behaviors of the silicon chips they are supposed to
represent.

• serdes transceiver ASICs never double count. (there could
be improper settings of serdes transceiver ASICs)

19

Contention of Intentions

• The criteria for reassigning TX GetWave_Exists is neither defined in the spec nor logically conceivable. This practice is highly
questionable both in theory and practice.

h1(t) = hAC(t)

h3=hREI*h2

gTEG[x]

Output

h2*x

gREG[h2*x] h3*x

hREI=h3/h2

hREI*hAC*gTEG[x]

gTEG[x]

hAC*gTEG[x]

gREG{hAC*gTEG[x] }

TT TF

FF

FT

20

h2=hTEI*hAC

h4(t) = x(t)
Re-assign Tx GWE,
Rx_GWE to avoid
double-counting

Tx Auto Optimization

• Tx and Rx AMI functions are allowed to
“optimize” its tap coefficients and other
parameters based on channel interconnect
impulse response hAC(t)

• The assumption that Tx and Rx could both
independently optimize to desired
performance without loopback and still
maintaining correlation with silicon is highly
questionable for following reasons

21

Tx Auto Optimization (cont.)

1. Tx silicon is not capable of doing this auto
optimization

2. It deprived users the opportunity to manually
set Tx tap coefficients and other Tx/Rx
parameters, which is a very important
feature of channel simulation

3. It is logically inconsistent and is
fundamentally different from how Rx silicon
optimize its parameters

22

Proposed Solution for Double Counting

• Models should be true to the silicon they represent. In
case models attempt to out-smart the silicon by
running algorithms that is different from the true
behavior of the silicon, it should only be done under
explicit instructions

• Rx models could send instructions/info to Tx through
the backchannel, however Rx models (or EDA
tools/users) should not be allowed to dictate the Tx
output a priori; Rx should only process the Tx output a
posteriori.

• Since most silicon accepts fixed EQ settings, models
should be able to do the same. Automatic optimization
should be optional rather than mandatory.

23

Observations

• The time-domain reference flow has only four unique cases,
controlled by Tx and Rx GetWave_Exists

• Init_Returns_Impulse is informational only and does not impact the
workflow. In the nine valid cases involving Init_Returns_Impulse ,
five of them are duplicates

• Flow can be mapped to system equations from input to output for
each block

• Use_Init_Output was deprecated; AMI_GetWave is always called if
GetWave_Exists = TRUE

• x(t) and hAC(t) are only processed once by AMI_Init or
AMI_GetWave, systematically eliminating the double counting issue.

• The same reference flow applies to both LTI and NLTV AMI blocks.

24

Init_Returns_Impulse

• Init_Returns_Impulse does not participate in the reference
flow branching decisions.

• After the deprecation of Use_Init_Output, the new flow
always calls AMI_Getwave whenever Getwave_Exists = true,
regardless of the value of Init_Returns_Impulse

• Outputs are generated by AMI_Init only if Getwave_Exists =
false and in this case, the flow always calls AMI_Init regardless
of the value of Init_Returns_Impulse

• Clarification is needed on the intended purpose, application,
interpretation of Init_Returns_Impulse, and its role in the
flow.

25

AMI_Init

• If Init_Returns_Impulse = TRUE, AMI_Init returns the
convolution of input impulse response with impulse
response of the equalization

• If Init_Returns_Impulse = FALSE, AMI_Init passes the
input to output without changing it

– the AMI block represents an all pass filter which impulse
response is the Dirac delta function with unit amplitude.

• The output can always be interpreted as the convolution
of the input with the impulse responses of the AMI block.

26

AMI_GetWave

• Only applies to time-domain flow; does not
apply to statistical flow

• Can represent either NLTV or LTI AMI blocks

• In reference flow, AMI_GetWave always has
higher precedence than AMI_Init

• Explicit relationship between output and input
may not exist

27

Conclusion on Reference Workflow

• IBIS 5.1 time-domain reference flow is a one-pass flow
where only one of _Init or _GetWave is deployed at
simulation time. This approach allows the flow to be
mapped to system equations consistent with well-
established signal processing principles.

• Double-counting remained an unresolved issue in 5.1
due to the fact that Tx and Rx are allowed to “optimize”
independently

• Deprecation of Use_Init_Output simplified the
workflow without comprising capability.

• Init_Returns_Impulse is a trivial case of degeneration.
Its impact to flow and result is insignificant.

28

Analog Channel

Introduction of Analog Modeling

• IBIS 5.1 AMI channel model is shown above.

• All analog blocks are cascaded to form the analog channel with impulse response
hAC(t)

• There are ambiguities in the impedance conditions at the input and output of analog
channel

• This presentation is intended to explain and clarify the issue of interface impedance
conditions between the Tx/Rx AMI block and analog channels

Tx
AMI

Tx
Analog

Channel
Interconnect

Rx
Analog

Rx
AMI

29

Analog Channel

What is in IBIS 5.1?

• “The transmitter equalization, receiver equalization and clock recovery circuits are
assumed to have a high-impedance (electrically isolated) connection to the analog
portion of the channel”

• At the interface of core (i.e. Tx AMI block) and analog circuit (i.e. Tx analog), there are
two impedances, one is the output impedance of the AMI block and the other is the
input of the analog clock. The wording in the spec did not say which is which. Are they
both high impedance or only one of them is high impedance, and which one?

Tx
AMI

Tx
Analog

Channel
Interconnect

Rx
Analog

Rx
AMI

30

Network Cascade Problem

• The network has five blocks of A,B,C,D and E cascaded in sequence.

• Block A is the signal source which could be non-linear time-variant (NLTV). Its output
impedance is assumed LTI and provided in S-matrix Sa

• Block A generates the waveform va
out(t)

• Block E is the signal sink which could be NLTV. Its input impedance is assumed LTI and
provided in S-matrix Se

• B, C and D are LTI networks and can be represented by S-matrices of Sb,Sc,Sd

• In this context, no restrictions or assumptions were made whatsoever on the ranges
and values of the S-parameters. All the interfaces (A-B, B-C, C-D, D-E) are generally
and arbitrarily MIS-matched.

• We wish to obtain the voltage at the input of block E, ve
in(t), taking into account of all

the reflections/mismatches at all interfaces, rigorously (i.e., free of any assumptions
that can cause systematic errors)

Sa, Za Sb Sc Sd Se, Ze
A B C D E

Sa

31

Step 1: cascade B,C,D into €

• cascade B,C,D into a single network €, the
cascade sub-network B+C+D has S-matrix S€

• The cascade formula are trivial exercises of
textbook problems and are not listed here

Sa S€ Se

B+C+D = €

32

Step 2: frequency domain equations

 By definition of S-parameter, we have
a1 = Sab1+ va

out

a2 = Seb2

b1 = S11a1 + S12a2

b2 = S21a1 + S22a2

 Solve for b2 ,a2

b2 = Ŝ· va
out

 , a2 = SeŜ· va
out

Ŝ= [S22Sa/(1-S11Sa) + S22]/[1-S22Se-S22SaS12Se/(1-S11Sa)]

Sa S Se

a1

b1

a2

b2

A E

33

Step 3: time domain equations

 Input voltage at block E is,
ve

in = H(jω)· va
out

where H(jω) = (1+Se) Ŝ

 Its time domain correspondence is,
ve

in (t)= h(t) * va
out(t)

where h(t) is the channel impulse response, va
out(t) is the

output waveform of the signal source (i.e. input to the
channel) and, ve

in (t) is the input voltage at block E (i.e.
output of the channel)

Sa S€ Se

a1

b1

a2

b2

A E

34

Conclusion

 The solution of the general network cascade problem
takes into account all the mismatches in the system

 No assumptions are made on the values or ranges of
any of the S-parameters

 Solution formula are straightforward and widely
available from textbooks on network theory

Sa S€ Se

a1

b1

a2

b2

A E

35

IBIS 5.1 AMI

 IBIS 5.1 AMI 5.1 is a special case of the general network
cascade problem by assuming that the source, sink and
channel have ideal impedance values
1) Signal source has zero output impedance (Sa = -1)

2) Analog channel is perfectly matched at input (Sb
11 = 0)

3) Analog channel is reverse isolated (Sb
12 = 0)

4) Analog channel is perfectly matched at output (Sd
22 = 0)

5) Signal sink has infinite input impedance (Se = 1)
 some implementation set this to 50 ohm either by design or by accident

(Se = 0)

Sa S€ Se

a1

b1

a2

b2

A E

36

IBIS 5.1 AMI, Pros and Cons

 The impedance conditions imposed by IBIS 5.1 AMI is a
special ideal case of the general network cascade problem

 There has been cases where these ideal impedance
conditions were mis-interpreted by either the model creator
or the EDA tool, resulting in erroneous results.

 The five ideal impedance conditions maybe too restrictive
for some model makers

 They could be confusing for some users

Sa S€ Se

a1

b1

a2

b2

A E

37

Recommendations

 IBIS 5.1 can be enhanced by removing the five ideal impedance conditions.
They don’t really offer much benefit, at the cost of restrictions to model
creators and confusions to EDA tool users.

 The general network cascade problem is straightforward to implement. It
provides all the freedom to model makers to model the circuits as they really
are (real world signal sources and sinks have non-ideal impedances)

 The requirement to provide source and sink impedances (Sa and Se) does not
add extra burdens to the model makers. These data are already available in
existing models. They actually reduce the burdens of model makers because
the non-ideal network data do not need to be fitted to meet the five
impedance conditions.

 The proposed enhancement does not deprecate or invalidate the five ideal
impedance conditions in IBIS 5.1 AMI (i.e. they can still be used in models if
desirable to some model makers)

Sa S€ Se

a1

b1

a2

b2

A E

38

Different ways to cascade

• The solution can be obtained by cascading the network in a
different sequence; A and B are cascaded, D and E are
cascaded to form the system shown above.

• It is obvious that this network has the exact same structure as
the one shown in Step 1 (cascading B, C, D)

• It can be solved using the exact same process as before

Sab Sc Sde

C A+B D+E

39

Conclusion

• The network cascade problem can be solved by different sequences of
cascading. The final answer should and will always be the same if done
properly by using the same formula.

• By lifting the five impedance conditions in IBIS 5.1 AMI, the proposed scheme
allows the model makers to put any circuits inside the signal source (aka AMI
block) without changing the work flow.

• From a modeling perspective, it is irrelevant to debate whether the circuit
inside the signal source (aka DLL block) is digital or analog, because it does
not really matters (again, from a modeling perspective)

Sab Sc Sde

C A+B D+E

40

