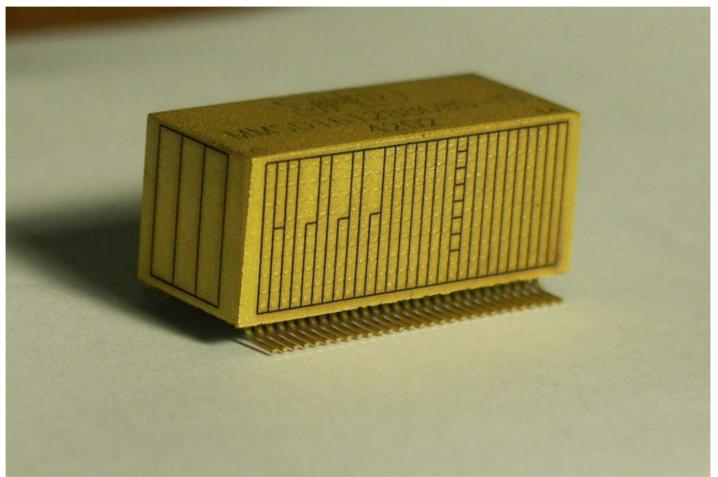
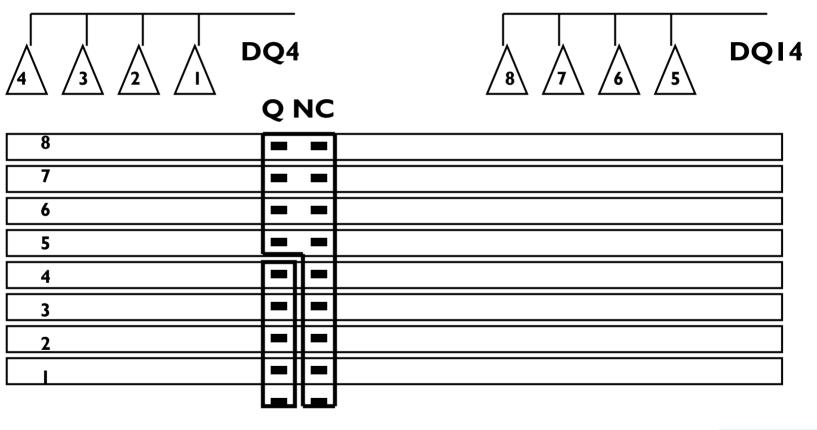
Stacked Package Modeling with IBIS Version 4.1

Tom Dagostino and Bob Ross DesignCon IBIS Summit Meeting Santa Clara, California January 31, 2005

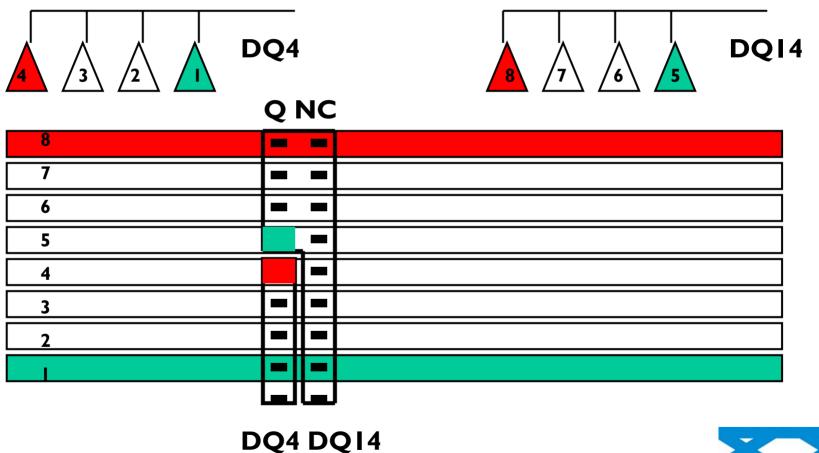

© 2002-2005 Teraspeed Consulting Group LLC

58 Pin IBIS Component Problem

- 58 pin 2 Gbit I28M X I6 SRAM memory consisting of eight stacked 54 pin TSOP 256 Mbit X 8 SRAM ICs addressed by layerbased chip selects
- 3-D metal interconnect strips (vertical, on 4 sides and horizontal layer routing) produce significant degradation



Photograph of Package


8 Stacked ICs, NC Pin Strips Bring Out 8 Chip-selected I/Os on 2 Pins

DQ4 DQ14

I/Os for Layer 8 (Red) Component and Layer I (Green) Component

TERASPEED CONSULTING

GROUP

Ver. 4.1 Multi-lingual IBIS Model

- 8 58 pin [Component]s, one per active layer
 - I/Os and Inputs for that layer plus I/Os from layer +/- 4
 - Other inactive layer Inputs and I/Os hard coded as Terminators (so, one signal active per pin)
 - Choose [Component] for best and worst paths
- 240 node super-die interconnect structure to Inputs and I/O's plus nodes to pins
 - Extracted lossy, coupled interconnect structure linked by [External Circuit] to SPICE & a [Circuit Call]
- Models set up as [External Circuit]s
 - But with vendor SPICE-based IBIS model links

Interconnect Extraction

- Vendor supplied bare package for T-lines
 TDR for delays, impedances of strips
 - And measured dimensions
- Layout all buffers and layers in HyperLynx with T-lines and dimensions
- Export lossy, coupled interconnect into HSpice formatted subcircuit

IBIS Buffer Models

- Single IC supplied separately and fully modeled as an independent IBIS file with [Component] and [Model]s
 - I/O buffers
 - Input buffers
 - Package (default package added to code for models)
- Construct huge multi-lingual IBIS model file
 - Passed Beta ibischk4 Version 4.1
 - Eight internal layer [Component]s

Results

- No tool can simulate multi-lingual model
 - Vendor-specific SPICE used (could have used Berkeley SPICE for interconnect)
 - [External Circuit] buffers with SPICE-based IBIS calls do not work (and direct table links not legal)
 - No Model_type information for automatic processing
 - Cannot bring in total simulation net
- HyperLynx simulation by hard coded buffer selection – cannot be used as component on larger board
 - But did simulate with expected interconnect degradation in about 20 seconds per buffer

Alternative Approaches

- EBD
 - No coupling (50% too fast), but Terminator stubs not needed
- Vendor-specific psuedo board from electrical information
 - Not tried because not acceptable to chip vendor
- ICM
 - No links to IBIS, no support and more complicated
- No other vendor-specific solution worked
 - [Circuit Call] to IBIS [Model] links configuration issues
 - Spice-based net with IBIS calls syntax issues

Multi-lingual Issues

- Multi-lingual for interconnect and *-AMS models
 - Solution for encoding IBIS models directly
 - Forces *-AMS code, but limited *-AMS tool support, plus vendor-specific configuration issues
 - Requires Bi-directional models with driving and receiving modes

Cannot be Solved by IBIS Unless ...

- Direct IBIS table links to [Model] and [External Model]
 - Expanded [Circuit Call] or new [Model Call]?
- Some power-rail issues
 - Can Input or Terminator model have inactive A_puref and A_pdref nodes? (OK in standard IBIS)
- How to selectively bring in partial or full interconnect structure
 - EDA tool issue
- On-die chip select
 - Limitation overcome by using several [Component]s

