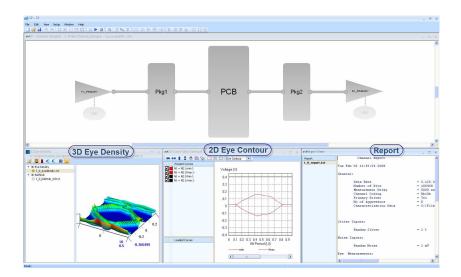


Extending IBIS-AMI to Support Back-Channel Communications

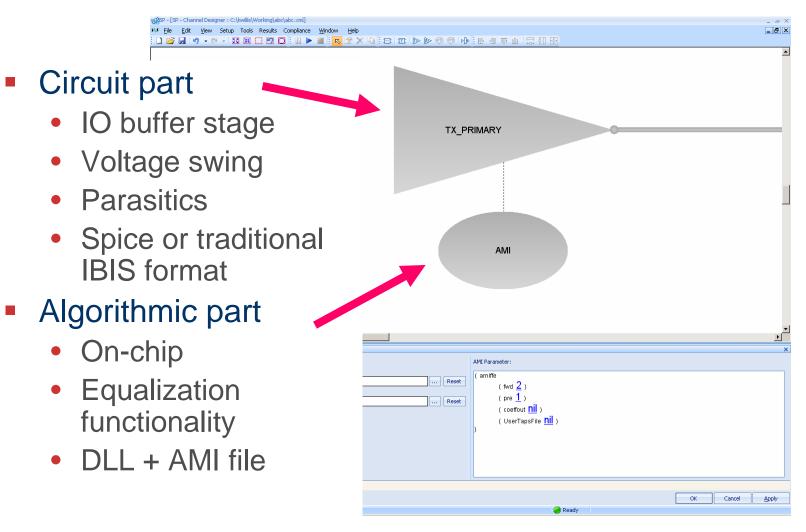
DesignCon IBIS Summit February 3, 2011 Santa Clara, CA

Kumar Keshavan - Sigrity Marcus Van Ierssel – Snowbush IP (Gennum) Ken Willis - Sigrity



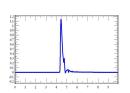
Agenda

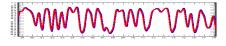
- IBIS-AMI overview
- What is back-channel communication?
- Q&A



IBIS-AMI Overview

IBIS-AMI Model Sub-Components


AMI Standard Interfaces Defined by IBIS


AMI_Init

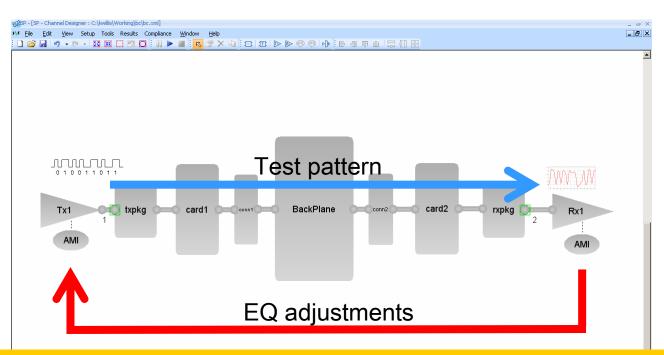
- Takes in the impulse response of the channel
- Algorithm in DLL decides how to best filter it
- The modified impulse response is passed back to the tool
- Typically used for "one-time" adaptive EQ

AMI_GetWave

- Takes in raw waveforms of the channel
- Algorithm in DLL decides how to best filter it, "real time"
- The modified waveform is passed back to the tool, along with the clock ticks (sampling information)
- Typically used for "real-time" adaptive EQ

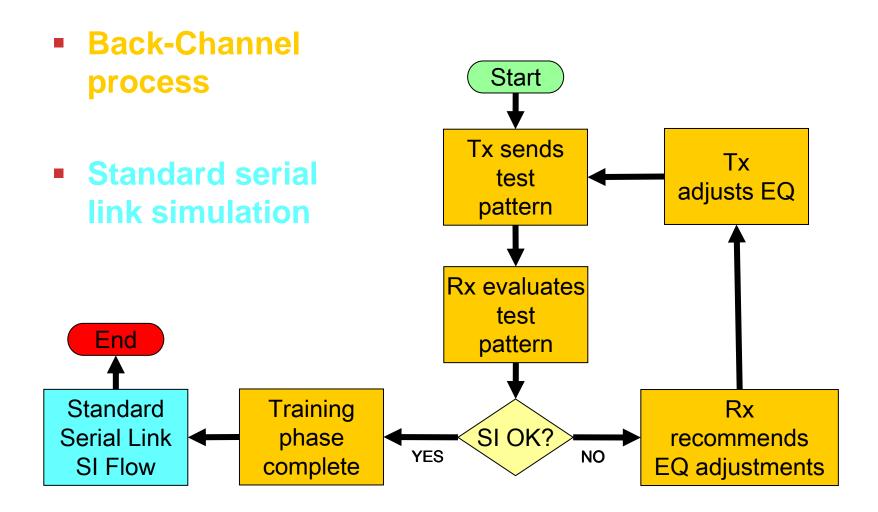
IBIS-AMI and Back-Channel Communications

- Back-channel communication is *not* currently supported by IBIS-AMI
- IBIS-AMI can be easily extended to support this capability
- This has been proven by Snowbush implementation for their PCI Express Gen. 3 IBIS-AMI model kit
 - See webinar at:
 - <u>http://www.sigrity.com/company/events/2010webcast/Webcast2.ht</u>
 <u>m</u>



What is back-channel communication?

Back-Channel Definition



- Back-Channel: means by which a SerDes receiver (Rx) provides feedback to its SerDes transmitter (Tx) regarding how to optimize Tx equalization (EQ) settings for signal quality
- Typically achieved by the Tx sending a test pattern to the Rx

Typical Back-Channel Flow

Receiver vs. Transmitter EQ Adaptation

- EQ adaptation in the Receiver
 - Real time adaptation
 - Evaluation of raw waveforms at the Rx
 - Signal processing using CTLE and DFE
 - Standard IBIS-AMI functionality
- EQ adaptation in the Transmitter
 - Evaluation of raw waveforms still done at the Rx
 - Rx passes info to Tx on how to modify EQ settings through back-channel
 - Functionality above and beyond IBIS 5.0

Back-Channel Support Overview

- Standard IBIS AMI_GetWave function extended to enable backchannel parameters to be passed between Tx and Rx AMI models
- Transmitter:
 - When initialized, AMI model reads in Increment/Decrement/Hold instructions from Rx for each of its tap coefficients
 - When closed, AMI_GetWave writes out the status of its coefficients
- Receiver:
 - When initialized, AMI model reads in the coefficient status info from Tx
 - When closed, AMI model writes out its coefficient Increment/Decrement/Hold request to Tx
- SystemSI_Channel Designer facilitates the communication between Tx and Rx AMI models
 - Back-channel communications enabled when both Tx and Rx AMI models specify the same file with the "Train" parameter

Back-Channel Details

- Training standards
 - Tx and Rx have to support same standards
 - E.g pcix3/ieee802_ap
- The standard file specifies (in .ami format):
 - What data streams Tx can send to Rx during training
 - How long the training can be
 - What constitutes success or failure for training
- Tx communicates to Rx the status of its coefficients:
 - They are adjustable OR
 - Reached the maximum limit (only can be "decremented")
 - Reached the minimum limit (only can be "incremented")
- Rx Communicates to the Tx
 - Increment/decrement/no change for each of the Tx coefficients
- Rx tells the EDA tool when training is done
 - Also tells whether training was success or failure

Tx->Rx and Rx->Tx Communication Enabled by EDA Tool

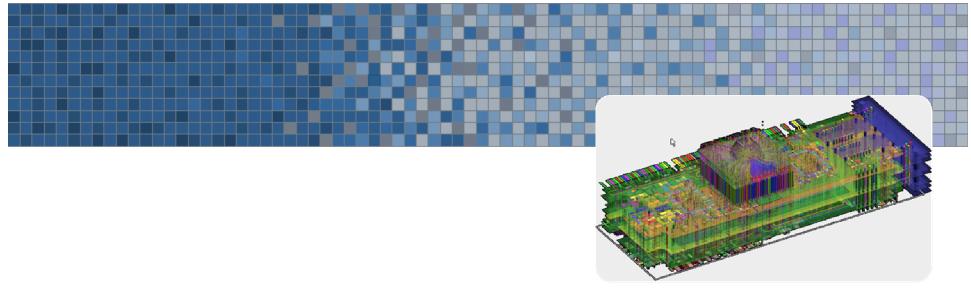
- Parameters "Train" and "TrainOn" are in both Tx and Rx
 - (Train (Type String) (List "pcix3.tme" "ieee803_ap.tme"))
 - Pcix3.tme , ieee803_ap.tme are standards-specific training files
 - In this case device supports multiple standards
 - "TrainOn" controls whether training mode is on or off
- EDA tool determines whether training is supported
- EDA tool uses parameters_out in AMI_GetWave to facilitate Tx->Rx and Rx->Tx communication
 - Takes parameters_out from Tx(Rx) and sends that address to Rx(Tx)
- Parameters_out has training-specific variable "tapincdec"

Tapincdec Structure

- From Tx
 - (<tap_id> -1|0|1)
 - -1 has reached "low" limit
 - +1 reached "high" limit
 - 0 can be incremented/decremented
- From Rx
 - (<tap_id> -n|0|+m)
 - -n decrement by 'n' units
 - 0 do nothing
 - +m increment by m units

Summary

- Advanced serial link standards utilize backchannel communication
 - PCI Express Gen. 3
 - 10GBASE-KR
- IBIS-AMI can be easily extended to support this
- Snowbush has introduced an IBIS-AMI model kit in which back-channel communication has been implemented
- Sigrity and Snowbush will introduce a BIRD to extend the IBIS-AMI standard with back-channel support



Thank You!

