Creating Broadband Analog Models for SerDes Applications

Adge Hawes, IBM adge@uk.ibm.com Doug White, Cisco dbwhite@cisco.com Walter Katz, SiSoft wkatz@sisoft.com Todd Westerhoff, SiSoft twesterh@sisoft.com

DesignCon 2009 IBIS Summit Santa Clara, CA February 5, 2009

οŊ

Agenda

- IBIS-AMI Models
- Analog Output Characteristics
- SerDes Reference Platforms
- SerDes Driver Modeling
- Correlation
- Existing Proposals
- The Direct Path
- Summary

IBIS-AMI Models

An IBIS-AMI model has two parts:

Analog Model

- Models unequalized analog device behavior
- Traditional IBIS table-driven models supplied as text (.IBS) files
- Used to characterize analog network and derive impulse response
- Analog model points to additional algorithmic model

Algorithmic Model

- Models equalization and clock recovery behavior
- Supplied as executable code
- Models can operate at two different levels:
 - INIT: impulse response processing
 - GETWAVE: time-domain waveform processing

SiSoff

Analog Output Characteristics

Michael Mirmak IBIS-ATM Work Archive 1-Oct-2008

- Frequency-dependence of buffer behavior has been well documented
 - Arpad Muranyi, 2003
 - Michael Mirmak 2004, 2008
- Both transmission and reflection behaviors are frequency-dependent
- Existing IBIS black-box model doesn't represent broadband behavior

SerDes Analog Model Requirements

- Accurately model impedance and capacitance (transmission and reflection) characteristics over a wide frequency range
- Leverage existing IBIS format
- Leverage existing vendor data and processes
- Easy to understand and use

SerDes Reference Platforms • Traditionally, IBIS models have been compared to SPICE simulations and physical measurement SerDes models are usually compared to internal vendor tools, which are correlated to measurement

Broadband Analog Models - DesignCon 2009 IBIS Summit - Feb 5, 2009 © 2009, IBM, Cisco, SiSoft

Modeling SerDes Drivers

- Since we're comparing to SerDes vendor tools, we should understand how they model analog circuit behavior
- One method is to represent the driver as an ideal source in series with S-parameter data
- This scheme is simple to implement and models transmission / reflection characteristics across a wide frequency range

How Can We Do This in IBIS?

- An ideal source could be approximated with existing IBIS constructs
 - Better method is to just use an ideal source
- Algorithmic models handle the equalization behavior
- How do we include the S-parameter block?

Current IBIS Proposals

0

- Michael Mirmak has proposed an N-stage RC ladder network
- Could frequency-dependent behavior be adequately represented in this manner?

 Walter Katz's "IBIS Interconnect SPICE" proposal could be used to encapsulate S-parameter data

The Direct Path

TSTONEFILEmax*drv_bc.s4pTSTONEFILEtyp*drv_tc.s4pTSTONEFILEmin*drv_wc.s4p

Point directly to a TOUCHSTONE[®] file from within the buffer or component model

- TOUCHSTONE is already an EIA standard
- The S-Parameter element would be inserted between an ideal source and the "pad" nodes

DH PH DL PL DH PH DL PL DH PH DL PL

* Corners need further discussion

Touchstone[®] is a registered trademark of Agilent Technologies, Inc. and is used with permission.

Broadband Analog Models - DesignCon 2009 IBIS Summit - Feb 5, 2009 © 2009, IBM, Cisco, SiSoft

Correlation to Reference Platforms

- How well would the S-parameter scheme work?
 - Commercial tools are already using it
 - Results for one tool were reported at the DAC 2008 Summit

IBIS-AMI Model Results

Correlation to **IBM HSSCDR**

Summary

- Analog buffers have frequency-dependent transmission/reflection behaviors that need to be properly represented for SerDes analysis
- An ideal source / S-parameter combination models these behaviors well
 - Results correlate to established vendor tools
- Existing IBIS efforts can be adapted to meet this requirement, or we can point to S-parameter data directly
 - Main issue is expediency: need is NOW
 - Direct method already in production use

