cadence’

Experiences in Developing and
Correlating Eight Interoperable
Algorithmic Models

Adge Hawes IBM
Ken Willis Cadence Design Systems

IBIS Summit — DesignCon 2008 — February 7th, 2008
[Originally presented at DesignCon2008 - February 4, 2008]

IBM High Speed Serial Design

AMI Modelling Tips and Tricks

Making life easier for the AMI modeller
Adge Hawes, IBM

Correlating Algorithmic Models | Ken February 2008 © 2008 IBM Corporation
Willis Cadence

IBM High Speed Serial Design

IBM AMI Models

Tech Speed Model Available H/W Features
(Gb/s) Linux | Windows | Correlated*
90nm 6.40 Jul 2007 | Oct 2007 | Yes 4-tap FFE, AGC, 3- or 5-
tap DFE
11.1 Sep 2007 | Oct 2007 | Yes 3-tap FFE, AGC, 3- or 5-
tap DFE, advanced
equalization
65nm 6.40 Jan 2008 | Jan 2008 | Yes 4-tap FFE, AGC, 3- or 5-
tap DFE
3-tap FFE, AGC, 5-t
10.55 | Jan 2008 | Jan 2008 | In progress (upafo 5GE) o 1_tapap
(10Gb) DFE, advanced
equalization

*via internal sim tool

Developing Interoperable Algorithmic Models | Adge Hawes IBM

{171
T

© 2008 IBM Corporation

IBM High Speed Serial Design

AMI Simulation times

Simulation times h:m:s
6:00:00 T
5:00:00 —
4:00:00 —
. E HSSCDR
§ 3:00:00 - EAMI
O AMS
2:00:00 -
&
8 8 & S 8|8 S 88 o 215
0:00:00 S S[o] S 8|4 S S5 38
50,000 200,000 1,000,000 10,000,000
Number of bits

Developing Interoperable Algorithmic Models | Adge Hawes IBM © 2008 IBM Corporation

IBM High Speed Serial Design

AMI Modelling

ANSI standard C (not C++)
Closed Source (proprietary)
Functional and algorithmic
Represents your hardware
Available for Windows and Linux

Developing Interoperable Algorithmic Models | Adge Hawes IBM © 2008 IBM Corporation

[l
[
(1T} I:::

IBM High Speed Serial Design

Use Free Tools

Can't afford MATLAB or not enough licenses?

— Open-source OCTAVE available for Windows and Linux
(www.octave.org)

— Euler for Windows/Linux
(http://mathsrv.ku-eichstaett.de/MGF/homes/grothmann/euler/)

Use latest GCC for Linux compilation
— gcc —shared —o dllIname.dll source.c

Free Visual C++ Express for Windows
— Include libraries (/MT)

Free Editors have syntax highlighting

— Crimson Editor (www.crimsoneditor.com)
— Codeblocks (www.codeblocks.org)

Developing Interoperable Algorithmic Models | Adge Hawes IBM © 2008 IBM Corporation

IBM High Speed Serial Design

Beware Open-Source

Tempted to get common routines from open sources (e.g.
FFTW)?

GPL has “viral” effect — may require you to publish source
code that uses it

LGPL (Lesser or Library) may be acceptable, if dynamically
linked

Some code may not allow commercial use

If in doubt, consult your IP Law

7 | Developing Interoperable Algorithmic Models | Adge Hawes IBM © 2008 IBM Corporation

IBM High Speed Serial Design

AMI1 _Getwave Buffering

EDA tool will break input wave at arbitrary points

Boundaries will not coincide with clock edges

Clock cycle processing may straddle AMI_Getwave calls
Recommended processing:

S

Allocate enough space for buffering

Bufferl

wvolts

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

o

| Developing Interoperable Algorithmic Models | Adge Hawes IBM

Leftover waveform + partial cycle (as whole clock)

Bulk of waveform
Remaining part-cycle

NRZ

5e-010

1le-009 1.5e-009 2e-009 2.5e-009 3e-009 3.5e-009 4e-009 4.5¢

time

2

009

© 2008 IBM Corporation

IBM High Speed Serial Design

Usual C Advice

= Remember to:
— Check that pointers are not NULL

—free what you've al loc’ed

— Be aware of floating-point accuracy

—Watch types (double, long, int, float, etc., use “I"” for long
or double input)

— Check case and spelling (e.g. AM1_Getwave)

Developing Interoperable Algorithmic Models | Adge Hawes IBM © 2008 IBM Corporation

IBM High Speed Serial Design

Windows and Linux

= Aim for common source

—#include os.h:

— #define DIIExport _ declspec(dllexport) /* Windows */
#define WIN32 1
#define LINUX O
//#define DIIExport extern /* Linux */

= Watch path settings (C:\ vs Zhome/test)
= Expect minor differences

—~MS vs GCC
— Accuracy in 4t or 5t decimal place
—Don't let differences accumulate

Developing Interoperable Algorithmic Models | Adge Hawes IBM

:

© 2008 IBM Corporation

IBM High Speed Serial Design

{171
II“

Code example: Data structures

typedef struct dl1_obj_str {
long sample: /* count of the cycle number */
char path[MAXPATH]; /* the place to find the executables */
char pathsep; /* path separator */
double vmeas; /* The crossing point, in volts */
double vmax; /* The maximum signal, in volts */
double vmin; /* The minimum signal, 1n volts */

y double vamp; /* The amplitude of the signal */
int lastbits[MAXDFE]; /# the last bits stored, +/- 1 */
int ndfe; /* the number of DFE taps */
cdr_ext *cd; /* a pointer to the cdr_ext structure */

b d11_obj_type;

11 | Developing Interoperable Algorithmic Models | Adge Hawes IBM © 2008 IBM Corporation

—

il
|

IBM High Speed Serial Design

Code example: AMI_Init (1)

DITExport Tong AMI_Init(double *impulse_matrix,
long row_size,
Tong aggressors,
double sample_interval,
double bit_time,
char *AMI_parameters_in,
char **AMI_parameters_out,
void **AMI_memory_handle,
char ** msg)

d11 OE; _type *dl11_obj = 0; /* a pointer to our parameter object */

/* set up conf&g controls */
stree_type *config; _ . ‘
config = streeRead(AMI_parameters_in); /% config points to tree */

/* generate the storage for our parameters */

d11_obj = (d11_obj_type *) calloc(l, sizeof(dl1_obj_type));

/* dIl_obj 1s now a pointer to some allocated space big enough
to hold our dI] parameter object */

Developing Interoperable Algorithmic Models | Adge Hawes IBM © 2008 IBM Corporation

IBM High Speed Serial Design

Code example: AMI_Init (2)

-

/* now allocate space for the cdr variables, and set to zero */
d11_qu—>cd = (cdr_ext *) calloc(l, sizeof(cdr_ext));

P
/% determine 1f Linux or windows */
if (WIN32) {
d11_obj->pathsep = "\\';
} else { /* assume Linux */
: d11_obj->pathsep = '/';
/* Initialize some parameters */
d11_obj->sample = 0; /* number of clock cycles processed */
d11_obj->wave_time = 0.0;
p d11_obj->thiscycletime = 0.0;
éféeenestroy(config);
return 1: /* for success */
}

Developing Interoperable Algorithmic Models | Adge Hawes IBM © 2008 IBM Corporation

IBM High Speed Serial Design

1

{171
“if |I

(1L

Code Example: AMI_Close

DT1Export long AMI_Getwave(double *wave_1in,

{

S

}

'h:mg_I size,
-

dou *clock_times,
char **AMI_parameters_out,
void *AMI_dT1_memory)
:?/
return 1;

D1TExport lTong AMI_cClose(void *AMI_d11_memory)

15
J#

...

d11_obj_type *dl1_obj = AMI_d11_memory;
free(dl1_obj->cd); /% free the cdr variables #/
free(dl1_obj); /* free the whole object */
return 1;

Developing Interoperable Algorithmic Models | Adge Hawes IBM © 2008 IBM Corporation

IBM High Speed Serial Design

Execution examples

Getwave data DFE-modified return waveform
Eye from clock ticks DFE eye (before offset)

Developing Interoperable Algorithmic Models | Adge Hawes IBM © 2008 IBM Corporation

Correlating Algorithmic Models

Ken Willis, Cadence Design Systems Inc.

cadence

16 Correlating Algorithmic Models | Ken Willis Cadence

17

Algorithmic Model Correlation
Tips, Tricks, & Pitfalls

e Assumptions

 What are we correlating?
« Basic strategy

e« Common pitfalls

e Summary

Correlating Algorithmic Models | Ken Willis Cadence

cadence

Assumptions v’}

« Algorithmic model exists in some proprietary format,
and is consumable by a proprietary tool

 Requirement: Correlate an IBIS AMI API based
algorithmic model running in a commercial tool to
known reference *silicon or proprietary tool* given
same inputs

e For this discussion, assume FFE (i.e. pre-emphasis)
for Tx, DFE (Decision Feedback Equalization) for Rx

cadence

18 Correlating Algorithmic Models | Ken Willis Cadence

19

What are we correlating?

e Simulation results between proprietary tool using

“source” algorithmic model, and commercial EDA tool

using “new” algorithmic model, with identical inputs

Inputs

- Channel
- Stimulus
- Other

/
.

_ Source
Proprietary Tool |podel
New

Commercial Tool | Model

Correlating Algorithmic Models | Ken Willis Cadence

cadence

20

Basic Strategy — Layering of Variables on
Established Baseline

Start simple
— Correlate the easy case first

— Lossless channel with
terminations

— No filtering
— Pulse stimulus

Next add:

— Complex passive channel
— Bit stream

— Filtering

— Jitter injection

— Other elements

Correlating Algorithmic Models | Ken Willis Cadence

“Alphabet Soup” of variables!

Variable C

Variable B

Variable A

Simple
Baseline

cadence

Tx correlation approach e
Variable B
Variable A
1. Lossless Channel mple
— ldeal Tx, Ideal Rx

— simple pulse with no FFE/DFE
— Establish rise time and voltage swing of driving source

2. Select common “lossy” channel model to use in both tools

— Realistic case with “moderate” results is desirable (eye not fully
closed when filtering applied)

— Impulse response is best option to guarantee consistent
representation of channel

3. Establish common stimulus for both tools, ex. PRBS 31
pattern of 1 million bits

cadence

21 Correlating Algorithmic Models | Ken Willis Cadence

I Variable C

Tx correlation approach (contd.) Varible B

Variable A

Simple
Baseline

4. Correlate ideal Tx *no-package parasitics*
with FFE through channel to ideal Rx
termination
— Verify same tap coefficients generated for same

channel model in both tools

5. Correlate non-ideal (best/nominal/worst case)
Tx through channel to ideal Rx termination
— Include on-chip parasitics from Tx, account for

process/temp/voltage variations

6. Add jitter injection and other effects (ex. R],
Sj, TX/Rx freq. offset, etc.) one variable at a
time

I cadence

22 Correlating Algorithmic Models | Ken Willis Cadence

Common Pitfalls

e TX/Rx circuit model
assumptions

« Magnitude scaling

e S-parameter simulations

o Stabilization time

e Consistent measurements

e Supporting multiple platforms

cadence

23 Correlating Algorithmic Models | Ken Willis Cadence

Tx/Rx Circuit Model Assumptions

e Consistent front end ; I
circuit model required .-

« Same circuit model (I e RELEEEE :
should be assumed in = é’ " Suitehed resistor !
bothtools ~ TTTTTTmomooes |

e Make sure you know
what is being used in
the tool you are
correlating with! QS R 3R 2

cadence

24 Correlating Algorithmic Models | Ken Willis Cadence

Magnitude Scaling

i Te [Im |Ma Pl
D@ ink Aadaddiditk++ 0 [HEEE s ¢ {2

« Consistent Impulse .
Response deflnltlon :A;;EE..............m;mmmm@«E:%‘u“.%" iffratienionn =iz =] B I

n eCessary a0 woenwseaw
— Internal tools can contain] |
“hidden” scaling factors I -

for corner cases

[iiiclelelelol= T I T X Iefel I Isfs] I
|
|

* AffeCtS eye helght mn —*.—‘/f i |Hh_“"“"'='_* ?"'“T""r’.**-:f——_—-t:——-————v——-g —

magnitude correlations

§|E ——

oo

B

LRt

58

z Z

=z

ge
-
]

=

Wi F2LL T

cadence

25 Correlating Algorithmic Models | Ken Willis Cadence

S-Parameter Simulations

 More stringent S-
parameter criteria
required for time domain
simulation

— Start/end freq
— Number of steps
— Linear steps

e Robust DC extrapolation
technigues needed for
time domain s-parameter
simulations

26 Correlating Algorithmic Models | Ken Willis Cadence

;. g Grach Todks e 130k cadence
ifn.ilm'_ﬂ.

gaw‘; P iRAA8ARRKQ Lk +d Fﬁmﬁi g l_.-

El_ i B J.','_,I_ ——————— - -0 |_‘-\ W2 GE e

irapzan

. MagPhase Extrapolat 5. Smith Chart

B o i e il T,',".F"}.‘.*.‘?.’F.’.E. S — reprrrTY g TTTTTTIT
@ ol e AL ik W A Wl YLl M VR B A 1 B 1 1 1 ™ prerT i
Q

@

@

=

|FHO0000000e088 !
Valksge [mV]

cadence

Stabilization Time

» Clock recovery algorithms may
need to run some traffic before . _ ——
|0Ck|ng in P__ﬁ@aﬁﬂ?aaaw&a;u %hx«ﬁ]ﬁﬂ@ﬂ%

* |deal (underdamped) cases
may need more stabilization
time than non-ideal ;
(overdamped)
best/nominal/worst case 2
corners

» Allow scenario to stabilize .0 vVt PN
before recording data for | 1
measurements i T

« Particularly important with DFE

waveform processing
(“AMI_GetWave” call)

izrapzan
sim1: (DESIGN TX 1) DESIGN TX | Pulse Slow Reflection B
caseld - Tue Dec 18 03:08 33 2007

cadence

27 Correlating Algorithmic Models | Ken Willis Cadence

Consistent Measurements

D@ ise Aadaaagelirtrs s [FEE@BIS [«

eI e e o T
jramza

 Ensure “apples-to-apples” et
measurement criteria for \ |
outputs of proprietary and
commercial tool

D@ iuk RA82aAKQ ikt +se [FEO@IS S |+

5 = e S el (L |

jramza

=

cadence

28 Correlating Algorithmic Models | Ken Willis Cadence

Supporting Multiple Platforms

« Small numerical differences
between hardware platforms (ex.
Linux & Windows) can
significantly influence results

' i - So many platforms, so little time ...
« Establish baseline regression yP et

tests for a given DLL across all
supported platforms

 Validate each new version of DLL
VS. previous “golden” results with
standard testbench

cadence

29 Correlating Algorithmic Models | Ken Willis Cadence

Summary

« Algorithmic models should be correlated against the
source *silicon or proprietary tool*

e Success requires an organized and methodical
approach

e Avoid common pitfalls and accelerate model releases!

cadence

30 Correlating Algorithmic Models | Ken Willis Cadence

	Experiences in Developing and Correlating Eight Interoperable Algorithmic Models
	AMI Modelling Tips and Tricks
	IBM AMI Models
	AMI Simulation times
	AMI Modelling
	Use Free Tools
	Beware Open-Source
	AMI_Getwave Buffering
	Usual C Advice
	Windows and Linux
	Code example: Data structures
	Code example: AMI_Init (1)
	Code example: AMI_Init (2)
	Code Example: AMI_Close
	Execution examples
	Correlating Algorithmic Models
	Algorithmic Model Correlation �Tips, Tricks, & Pitfalls
	Assumptions
	What are we correlating?
	Basic Strategy – Layering of Variables on Established Baseline
	Tx correlation approach
	Tx correlation approach (contd.)
	Common Pitfalls
	Tx/Rx Circuit Model Assumptions
	Magnitude Scaling
	S-Parameter Simulations
	Stabilization Time
	Consistent Measurements
	Supporting Multiple Platforms
	Summary

