

# Adaptive DFE Modeling using IBISv4.2



Ehsan Kabir, Susmita Mutsuddy, Abdulrahman Rafiq, Luis Boluña IBIS Summit - Feb, 1 2007 San Jose, California.

ASIC Signal Integrity and Packaging Design (ASIPD)

### Today's Agenda

- Brief review of Past Work: where we left off...
- Brief Overview of the Challenge today in Modeling
- What is a DFE?DFE diagramLMS Algorithm
- VHDL Code:

The modeling process

**AMS** Code

Results

Learnings

- What's next
- Conclusions

### U2U 2005



### U2U 2006







### Today's Agenda

- Brief review of Past Work
- Brief Overview of the Challenge today in Modeling
- What is a DFE?DFE diagramLMS Algorithm
- VHDL Code:

The modeling process
AMS Code
Results
Learnings

- What's next
- Conclusions

### **Challenges**

- SerDes Technology is seen in many applications today
   XAUI, CEI, PCI-E, XFI, SATA, FC etc
- Limitations in Modeling features of SerDes using HSPICE
- Proprietary solutions in modeling is not acceptable due to interoperability issues
- DFE can be a complex feature to model and this paper will attempt to address this challenge using IBISv4.2

### Today's Agenda

- Brief review of Past Work
- Brief Overview of the Challenge today in Modeling
- What is a DFE?DFE diagramLMS Algorithm
- VHDL Code:

The modeling process
AMS Code
Results
Learnings

- What's next
- Conclusions

### What is a DFE?

- A Decision Feedback Equalizer is a digital equalizer design to remove primarily Intersymbol Interference
  - -Unlike other filters the DFE does not invert the channel, it removes ISI
  - -Does not amplify noise
  - -Can accumulate errors
  - -Feedforward EQ needed to reshape and remove precursor

# What is a DFE? (2)



# What is a DFE? (3) Response of a channel



# Many creative and innovative ways to architect a DFE...

TABLE I PREVIOUS MULTI-GB/S RECEIVERS WITH DFE

| [Ref] Author<br>(Year) | Baud rate   | Receiver<br>architecture | DFE type                       |
|------------------------|-------------|--------------------------|--------------------------------|
| [2] Zerbe (JSSC '03)   | 6.4-10Gb/s  | 2× interleaved,          | 5-tap DFE for >5 <sup>th</sup> |
|                        |             | 2-PAM/4-PAM              | post-cursor ISI                |
| [3] Balan (CICC '04)   | 6.4Gb/s     | 4× interleaved,          | 4-tap DFE,                     |
|                        |             | 2-bit ADC                | loop-unrolled                  |
| [4] Stojanovic         | 5-10Gb/s    | Single-path,             | 1-tap DFE,                     |
| (JSSC '05)             |             | 2-PAM w/ DFE             | loop-unrolled                  |
| [5] Krishnapura        | 5Gb/s       | Single-path              | 3-tap DFE                      |
| (ISSCC '05)            |             |                          |                                |
| [6] Sorna (ISSCC '05)  | 6.4Gb/s     | Single-path              | 5-tap DFE                      |
| [7] Krishna            | 0.6-9.6Gb/s | 2× interleaved           | 1-tap DFE,                     |
| (ISSCC '05)            | 0.0-9.000/8 | 2× interieaved           | loop-unrolled                  |
| [8] Payne (ISSCC '05)  | 6.25Gb/s    | 2× interleaved           | 4-tap DFE                      |

Table from Aida Varzaghani and Chih-Kong Ken Yang, April, 2006 JSSC

- Mixed Signal DFEs
- Analog DFEs
- All Digital DFEs
- Loop unrolling DFEs [Pahri '90, Kasturia '91, Stojanovic VLSI '04]
- Mixed Signal DFE [Brown ISSCC '97]
- RAM based DFE [Brown ISSCC '97]
- Mixed Signal DFE [Le, JSSC '02]
- Current Mode DFE [Wu, DesignCon '04]
- Look Ahead DFE [Kajley JSSC '97]
- Time Interleaved A/D DFE [Varzaghani JSSC '06]

# 1-tap DFE

Y(n) = input

 $\hat{Y}(n)$  = digitized input at time n

 $\hat{Y}(n-1)$  = digitized input at time n-1

$$\hat{Y}(n)\Big|_{n=1}^{length\_of\_symbols} = Y(n) - C_1 * \hat{Y}(n-1)$$

Ŷ(n) DELAY Ŷ(n-1)

The decision, multiplication and addition must all take place within one symbol time, as shown by arrow

Y(n)

# **Multiple tap DFE**



$$\hat{Y}(n)\Big|_{n=1}^{length\_of\_symbols} = Y(n) - C_k * \hat{Y}(n-k)$$

# **Algorithm – LMS**

- LMS "Least Mean Square"
- Based on a gradient descent algorithm.

$$h_{n+1}(i) = h_n(i) + \frac{\mu}{2} \left\{ -\left(\frac{\partial}{\partial h_n(i)} (|e|^2)\right) \right\}$$
 [eqn 1]



Rearranging terms for derivative portion,

$$\frac{\partial}{\partial h(i)}(\left|e\right|^2) = 2\frac{\partial}{\partial h(i)}(e)e = 2\frac{\partial}{\partial h(i)}(d-y)e = \frac{\partial}{\partial h(i)}(d-\sum_{i=0}^{N-1}(h(i)x(n-i)))e$$

$$\frac{\partial}{\partial h(i)}(|e|^2) = 2(-(x(n-i)))e \qquad [\text{eqn 2}]$$

plugged back into eqn 1,

$$h_{n+1}(i) = h_n(i) + \underset{\text{coeff}}{\mu ex(n-i)}$$
 [eqn 3]

[Reference]

# **Other Adaptive Algorithms**

Please note that there are other variations and algorithms found in academia/industry. Each has its merit and only two are mentioned here.

- Sign Algorithms
- Zero Forcing Algorithms
- etc., etc.

### Today's Agenda

- Brief review of Past Work
- Brief Overview of the Challenge today in Modeling
- What is a DFE?DFE diagramLMS Algorithm
- VHDL Code:

The modeling process

**AMS Code** 

Results

Learnings

- What's next
- Conclusions

### Sharing our experience in creating the model

- Began with a 1 tap DFE in Matlab running at 6.25Gb/s, fixed coefficient.
- Converted this 1 tap 6.25Gb/s DFE model to VHDL-AMS
- Expanded this model to a multiple tap DFE model
- Added an LMS adaptive algorithm to Matlab model.
- Converted this multiple tap 6.25Gb/s DFE model to VHDL-AMS

### VHDL-AMS code (1)

- Symbol spaced random data was sent via a channel and captured into a file.
   Note data is defined as centered around 0 with values of either +0.5 or -0.5.
- This waveform was read from a file and then placed into a single dimensional array, z.
- Essential code describing this:

# VHDL-AMS code (2)

#### Essential code for DFE and adaptation algorithm:

```
N = number of taps
for i in (N+1) to Nx loop
                                                                            Nx = length of symbols
 k := ((i-1) * N) - (N-1);
                                                                            Z = symbols
 for j in 1 to N loop
  z(i) := tap(k) * sign(z(i-j)) + z(i);
  k := k + 1:
 end loop;
                                                                            mu = LMS step size
 -- Co-efficients for next sample using Standard LMS algorithm.
 k := ((i-1) * N) - (N-1);
 for j in 1 to N loop
  tap(k+N) := tap(k) + mu * (0.5 * sign(z(i)) - z(i)) * sign(z(i-j));
  k := k + 1:
 end loop;
end loop;
```

### VHDL-AMS code (3)

- Essential code for writing results to a file:
- -- writing 1st,2nd,3rd,and 4<sup>th</sup> coefficients and DFE output to individual files.

```
-- load first coeff1 to "tap1.dat"
file_open(tap1_out, "tap1.dat", WRITE_MODE);
index := 1;
for index in 1 to Nx loop
    WRITELINE(tap1_out, S);
    write(S, coeff1(index));
end loop;
```

< other taps written here as above>

```
-- load z (DFE output)
-- to "out.dat"
file_open(count, "out.dat", WRITE_MODE);
   index := 1;
   for index in 1 to Nx loop
      WRITELINE(count, V);
      write(V, z(index));
   end loop;
```

### AMS Results for a 6.25Gb/s Adaptive 2 tap DFE



### AMS Results for a 6.25Gb/s Adaptive 2 tap DFE





### AMS Results for a 6.25Gb/s Adaptive 4 tap DFE



### AMS Results for a 6.25Gb/s Adaptive 4 tap DFE



### **Please Note:**

- The DFE model we present can be improved to include:
  - modeling of Feedback bandwidth
  - modeling of Adaptation bandwidth
  - Parasitics
  - Correlation to measurements
- Hence we are currently actively engaged with Vendors in modeling their circuitry in a more realistic manner in AMS.
- Nonetheless, we achieve our goal of demonstrating that AMS can model an Adaptive DFE.

### **Learnings and comments**

- Reference libraries for the user can be a time saver.
- Debugging tools can be improved.
- Use of multidimensional arrays is restrictive and cumbersome.

### Using AMS Models in IBIS v4.2...

- IBIS v4.2 supports multi-lingual language extensions through the use of SPICE, VHDL-AMS, Verilog-AMS to expand modeling support
- IBIS v4.2 Is extremely flexible and extendible
- IBIS v4.2 enable's users to model complex features of I/O's
- Latest IBIS version that supports Multi-lingual languages is IBIS v4.2

### Calling AMS with IBIS v4.2 [External Circuit]

```
[Circuit Call] DFE2
Port map vdd ic 21
port map vss ic 22
[End Circuit Call]
[External Circuit] DFE2
Language VHDL-AMS
|Corner corner name file name subckt name
       Typ DFE2.vhd ADFE_typ2
Corner
       Min
Corner
             DFE2.vhd ADFE min2
Corner Max
             DFE2.vhd ADFE max2
Ports vdd ic vss ic
[End External Circuit]
```

### Today's Agenda

- Brief review of Past Work
- Brief Overview of the Challenge today in Modeling
- What is a DFE?DFE diagramLMS Algorithm
- VHDL Code:

The modeling process
AMS Code
Results
Learnings

- What's next
- Conclusions

### **Next Steps**

- Cross-functional team has been expanded to now cover SerDes Modeling, Simulation and Measurement.
- Ongoing work with 4 preferred ASIC vendors for AMS model generation. This will cover IBISv4.2 models for over a dozen current ASIC designs

### Today's Agenda

- Brief review of Past Work
- Brief Overview of the Challenge today in Modeling
- What is a DFE?DFE diagramLMS Algorithm
- VHDL Code:

The modeling process
AMS Code
Results
Learnings

- What's next
- Conclusions

# **Conclusion: Summary**

- IBISv4.2 with multi-lingual extension is capable of modeling complex structures of a SerDes such as a DFE
- Correlation with Matlab and VHDL-AMS achieved in modeling a DFE

# Conclusion: My Message to You...

- 2005 U2U paper demonstrates IBISv4.2 VHDL AMS implementation of 3.125Gb/s TX and channel (extendable to other data rates).
- 2006 U2U paper demonstrates IBISv4.2 VHDL AMS implementation of metrics by which we can implement testability and observability portions of the channel.
- Present work here demonstrates IBISv4.2 implementation of an adaptive multitap DFE (extendable to other data rates).
- These are small significant steps. Work is progressing.
- IBISv4.2 with multi-lingual extensions is a viable format today to model various features of SerDes technology

# **Acknowledgements**

We would like to acknowledge the following people for the help they have provided in useful discussions and teachings:

**Bilal Ahmad** 

Eddie Wu

Jared Zerbe

**Brian Leibowitz** 

Jihong Ren

**Gary Pratt** 

Syed Huq



