

Differential System Design and Power Delivery

Vishram S. Pandit and Michael Mirmak

Intel Corp. IBIS Summit at DesignCon February 9, 2006

Acknowledgements:

Julius Delino, Sanjiv Soman, Woong Hwan Ryu, Arpad Muranyi, Henri Maramis

Copyright © 2006, Intel Corporation. All rights reserved.

Motivation

- Common assumptions for differential system design...
 - Currents in differential lines are equal and opposite
 - Summation of currents in sig and sig# (differential lines) is zero
 - Current in power equals current in ground at the driver
- These are <u>not</u> valid for all differential systems
- Understanding current behavior is key to proper differential power delivery design
- IBIS* community needs to address this behavior for system simulations

Outline

• Driver and termination types used in differential current analysis

- "Differential" driver types
 - Fully, Half and Pseudo
- Termination schemes and current profiles
 - Power, Ground, Between Lines, PI
- Detailed analysis of the popular half differential driver design
 - Currents in
 - Power and ground at driver
 - Differential lines
- Power Delivery (PD) design examples
 - Normal operation vs. driver power on/off
 - IBIS model usage

Typical Differential Driver Types (1)

Differential Interface Characteristics

	Fully Differential	Half Differential	Pseudo Differential	
Driver Terminations	Between sig and sig# (if not at receiver)	Different combinations (e.g., sig and sig# to power, gnd)	Not terminated	
Receiver Terminations	Between sig and sig# (If not at driver)	Different combinations (e.g., sig and sig# to power, gnd)	Different combinations (e.g., sig and sig# to power, gnd)	
Driver Bias	May be separate bias circuit	Provided through termination	Usually not necessary	
Industry Interfaces	LVDS	USB2.0, PCI Express*, SATA, etc.	USB1.1	

Typical Expectations for Differential Systems

Termination Schemes for Half Differential

2) Line to line

Termination #1: Power

Normal Operating Condition

(1) Majority of return current is through ground, a net DC return current

*Other names and brands may be claimed as the property of others

Driver Power On/off

10

Termination #2: Line to Line

Normal Operating Conditions

Difference Current: Small DC & AC

> Current (vssq) = Current (vccq)

Currents in Tlines: Equal and opposite; Summation ≈ 0

Voltages in Tlines

Driver Power On/off

Difference Current: Large DC & AC

> Current (vssq) ≠ Current (vccq)

Currents in Tlines: Summation eventually ≈ 0

Voltages in Tlines with change in common reference

*Other names and brands may be claimed as the property of others

Termination #3: Ground

Normal Operating Conditions

Difference Current: Small DC & AC

> Current (vssq) = Current (vccq)

Currents in Tlines: Equal and opposite; Summation ≈ 0

Voltages in Tlines

Driver Power On/off

Difference Current: Large DC & AC

Current (vssq) Current (vccq) ⁽¹⁾

Currents in Tlines: Summation $\neq 0$

Voltages in Tlines

(1) Currents will be equal depending on the cap charge up time, and cap value intel

*Other names and brands may be claimed as the property of others

Termination #4: π

Normal Operating Conditions

18

Driver Power On/Off

Difference Current: Large DC & AC

> Current (vssq) ≠ Current (vccq)

Currents in Tlines: Summation $\neq 0$

Voltages in Tlines

19

Summary of Current Profiles

Comparison of termination schemes

Terminations	I (sig) and I (sig#)	I (Power) and I (Ground) at driver		
Power	$I(sig) + I(sig#) \neq 0$	$I(Power) \neq I(Ground)$		
Between lines	l(sig) + l(sig#) = 0	I(Power) = I(Ground)		
Ground with AC coupling	I(sig) + I(sig#) ≠ 0 (0 after charge up of cap)	I(Power) ≠ I(Ground) (equal after charge-up of cap)		
PI	$I(sig) + I(sig#) \neq 0$	$I(Power) \neq I(Ground)$		

Significance of Current Profiles

- I(sig) and I(sig#) at driver
 - For half differential driver, the currents in the lines may or may not be equal and opposite.
 - In normal operation, when $I(sig) \neq I(sig\#)$
 - AC amplitude may be equal but centered around some DC value
 - Net non-zero DC return current
 - In the driver on/off scenario, summation of I(sig) and (sig#) may result in net DC+AC current
- I (power) and I (ground) at driver
 - In normal operation , when $I(power) \neq I(ground)$, some DC shift is present
 - AC current may be equal
 - Consider these currents in the driver on/off scenario
 - di/dt will be different for power and ground in this case

Observations re Energy in PDN and Noise

- Half differential driver designs utilize a current source
- High-frequency energy in Power Delivery Network (PDN) is small compared to that in driver power on/off scenario
- Power delivery solution space (die decoupling, package and board) depends on di/dt
- Noise produced in normal operating condition is smaller than that for driver power on/off condition
- Worst case occurs when driver power on/off cycles occur at resonant frequency of the PDN

Modeling Differential Systems

- Different modeling approaches for half differential driver
 - Transistor models
 - Icc(t) method
 - IBIS models
- In a differential system, each modeling approach needs to address
 - Termination schemes' dependence on system currents
 - Currents in power and ground
 - Currents in sig and sig#
 - The solution space is dependent on the currents

Transistor Model: SPEED2000* example

Sigrity SPEED2000* + Synopsys HSPICE* In Co-simulation

Noise at driver (A)

Noise at termination (B)

Driver power on/off event

Contemporary Icc(t) methods

- Typical Icc(t) approach assumes equal currents in power and ground
- Termination schemes MATTER when computing Icc(t)
- Currents in power and ground may or may not be equal
- Monitoring Ivcc and Ivss a must

*Other names and brands may be claimed as the property of others

Icc(t) for 5 Buffers

Driver power on/off event

Icc(t) Model: SPEED2000* example

Ivcc, Ivss under Sigrity SPEED2000*

Noise at source (A)

Noise at termination (B)

Driver power on/off event

IBIS model: Sigrity SPEED2000* Example

*Other names and brands may be claimed as the property of others

31

Normal Operation

Summation of currents in transmission lines **≠ 0**

Driver Power On/Off

 For optimum power delivery system design, driver power on/off behavior of the buffer must be analyzed

For IBIS*, the output only model cannot be switched off
Removing power from the buffer may not be accurate

• I/O model can be powered off through the Enable control

- Implementation is tool-dependent

Conclusions

- For half differential system
 - Currents in differential lines are not always equal and opposite
 - Currents in power and ground are not always equal
 - Termination schemes play an important role
- For differential systems, power delivery design must consider
 - Normal operation vs. power on/off events
 - Decoupling solutions to mitigate worst case operating conditions
- Different modeling approaches need to accommodate this behavior
- Key questions for industry
 - Do today's tools support driver power on/off event simulations?
 - Can IBIS* be used reliably for driver power on/off analyses?
 - Does BIRD95 include all the data needed for this kind of analysis?

Backup

Geometry and Stackup

Trace width: 5 mils Trace spacing: 7 mils

🗇 Stackup 📃 🗆 🕹										
Layer Icon	Layer Name	Thickness(mil)	Conductivity(S/m)	Color	TraceWidth(mil)	Shape Name	Permittivity	Loss Tangent		
	Medium_AIR	7.4803e-001					3.4000	0.0000		
	Signal01	2.0984e+000	5.8000e+007		3.9370e+000					
	Medium06	4.2520e+000					3.9000	0.0000		
	Plane_MB_VCC	1.4016e+000	5.8000e+007			Shape_MBVCC				
	Medium_MB_CORE	3.9728e+001					4.0000	0.0200		
	Plane_MB_VSS	1.4016e+000	5.8000e+007			ShapeMBVSS				
	Medium07	4.2520e+000					3.9000	0.0000		
	Signal02	2.0984e+000	5.8000e+007		3.9370e+000					
	Medium05	7.4803e-001					3.4000	0.0000		
Total Thickness: 5.6728e+001 mil Unit: Unit: View Material										

*Other names and brands may be claimed as the property of others

Icc verification with co-simulator

Co-simulator: Sigrity SPEED2000* + Synopsys HSPICE*

Current flow at drivers

5 Diff Drivers are used

*Other names and brands may be claimed as the property of others