

Fiberhome Telecommunications Technology Experiences with IBIS Models

Zheng Qi Qzheng@fiberhome.com.cn

IBIS Models have played an important role in signal integrity analysis

- Access Buffer Characteristics
- > Waveform Quality Check
- Timing Analysis

What Information can we get ?

- Use V-I Curves to calculate the driver output impedance
- V-t Curve provides the Buffer's transition time
- C_comp provides intuitional info of the load

Critical Net check

- Edge Trigged Signals
- Clocks

Check Contents

- Incident Voltage
- Edge Monotonic
- High /Low noise margin
- Source/sink currents

Flight Time Calculating

- Flight Time provides more reasonable descriptions than T.L Propagation Delay in Timing Budgets calculation
- T.L Delay ,loads and topology effects are taken into consideration

- > IBIS 1.0 V-I Curves
- IBIS 1.0 C_comp
- IBIS 2.1 rise/fall waveforms
- IBIS 2.1 Pin mapping

- IBIS 3.2 seldom
- IBIS 4.0 seldom

 \succ

. . .

Typical Problems

- Non-monotonic data in PU/PD table
- DC point does not match I-V load line
- V-t tables End slope not flat

Always tools will filter these points, but good Understanding of these warning is necessary

Multi-Drop bus Analysis When debugging we found data was improperly strobed .Post analysis shows there is non-Monotonic Clock Edge. Using high bandwidth probe check again and got it

Timing Analysis Strong Driver results in Hold time conflict

Occurs at "Low Speed" situation

IBIS models provides some clues in Waveform Quality check. But

- How Simulator processes the model is a black box
- Simulated result sometimes are tools relevant

Timing Analysis

- Different Driver strength results in great different Delay
- Under low speed situation Timing analysis was proven and the IBIS model works well
- IBIS model can't describe the internal delay of the buffer . when doing timing analysis we always puzzle about the "Zero" reference point . especially when timing budgets is tight
- Closing the Timing loop requires Core-to-core timing

- High Speed Serial Interconnect have widely used . But effective analysis was lagged
- Find Bugs of Serial Interconnect is more difficult than old designs. Maybe it is an impossible task

