Splitting C_comp for Power Integrity Simulations

Zhiping Yang, Ph.D. Cisco Systems, Inc. (Now with Apple Computer, Inc.)

Asian IBIS Summit in ShenZhen, China 12/6/2005

Acknowledgment

- The author would like to thank Cisco Systems, Inc. for the support and approval of this presentation material
- The author would like to thank Apple Computer, Inc. for providing travel arrangements to make this presentation happen
- The author would like to thank Randy Wolf from Micron for his support and help on HSPICE buffer model

Content

- Why C_comp and its split ratio are important for power integrity simulations?
- The procedures to extract the C_comp and C_decap values from HSPICE simulations
- Simulation results for Micron U27_a_dq buffer

Why C_comp and its split ratio are important for power integrity simulations?

- C_comp could impact the power integrity simulations in following ways:
 - C_comp at non-switching I/O could act as effective local decoupling caps. The ratio has a big impact.
- C_comp split ratio heavily impacts the noise level coupled from power supply to quite I/O pins, especially at high frequency.
 - C_comp split ratio will have direct impact on dynamic current distribution for switching I/O buffers

•

Note: C_comp split ratio has no impact on SI simulations when voltage supply is ideal.

Simplified I/O model for IBIS specification

Zvddq_open

Z_vddq_short_to_gnd

Yvddq_0=Ydecap+Yup (2-2)

Z_vddq_short_to_pwr

Yvddq_1=Ydecap+Ydown (3-2)

Z_io

Yio=Ydown+Yup (4-2)

Extraction of Yup, Ydown and Ydecap

- Yvddq_0=Ydecap+Yup (2-2)
- Yvddq_1=Ydecap+Ydown (3-2)
- Yio=Yup+Ydown (4-2)

Yup=(Yvddq_0+Yvddq_1+Yio)/2-Yvddq_1 (5-1)
Ydown=(Yvddq_0+Yvddq_1+Yio)/2-Yvddq_0 (5-2)
Ydecap=(Yvddq_0+Yvddq_1+Yio)/2-Yio (5-3)

I/O pin impedance

Power/ground impedance when I/O pin is open

I/O pin capacitance

Vccq parasitic resistance

Vccq parasitic capacitance

Pull_up and Pull_down resistance

Pull_up and Pull_down capacitance

Conclusions

- C_comp is frequency and state dependent
- C_comp split ratio is also frequency and state dependent
- C_comp and its split ratio are very important factors for correct power integrity simulations
- Existing C_comp and I/V table may not completely model the frequency dependent property of I/O buffer, even at steady state.

?