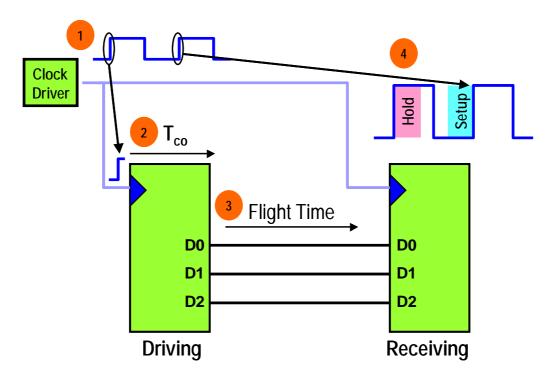
Asian IBIS Summit 2005

Simulation with IBIS in Tight Timing Budget Systems

健 待 췱 SUI,SHIJU sui.shiju@zte.com.cn

Agenda

- Basis of system timing analysis
- Simulation with IBIS in tight timing budget systems
- Analysis methods


Timing Analysis Basis

- Systematic timing analysis identifies
 - Timing topology
 - Setup and hold time margins
 - The risk of timing violations

Common-Clock Synchronous System

Timing topology

Timing Margins of CCS System

Clock Period							
Driver(Tcomax)	Tflight _{max}	+/-Skew	Jitter	Tguard	Receiver(setup)	Setup_margin	

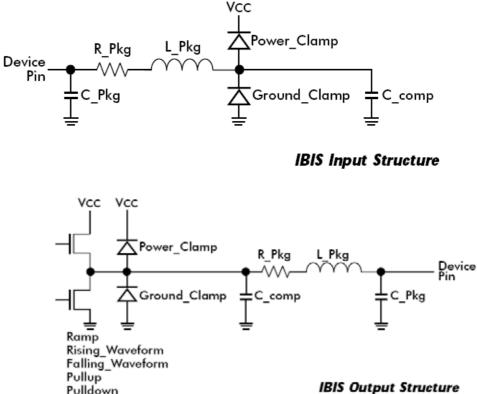
Setup_margin=Clock Period-Driver(Tcomax)-Tflightmax-Skew-Jitter-Tguard-Receiver(setup)

Driver(Tco	nin) +	Tflightmin		
Receiver(hold)	+/-Skew	Tguard	Hold_margin	

Hold_margin=Driver(Tcomin)+Tflightmin-Skew-Tguard-Receiver(hold)

Loose Timing Budget System Analysis

- Definition
- Required inputs
 - Timing topology
 - Component-level timing data
 - Operating clock frequency
 - Approximated flight time and guard band



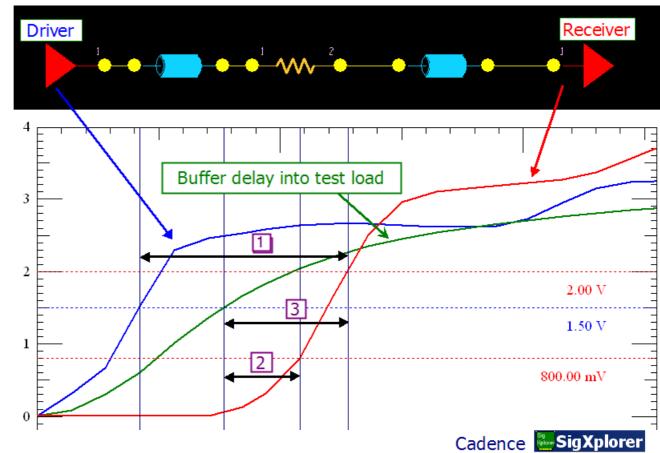
Tight Timing Budget System Analysis

- Definition
- Required inputs
 - Timing topology
 - Component-level timing data
 - Operating clock frequency
 - Simulation with component models is mandatory
 - More sophisticated numerical processing needed

IBIS Models Do Good Job in Simulation

Available

Effective


Flight Time

Flight time vs. propagation delay

- Propagation delay
 - The sum of T-line delays in the path
- Flight time
 - The time it takes the data out from the driver to settle at the receiver's input
- For tight budget designs the flight time should be simulated with cautions

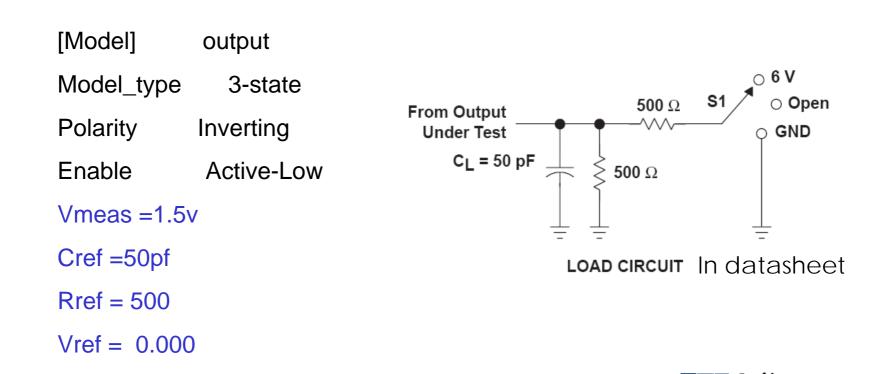
Flight Time Simulation

Questions

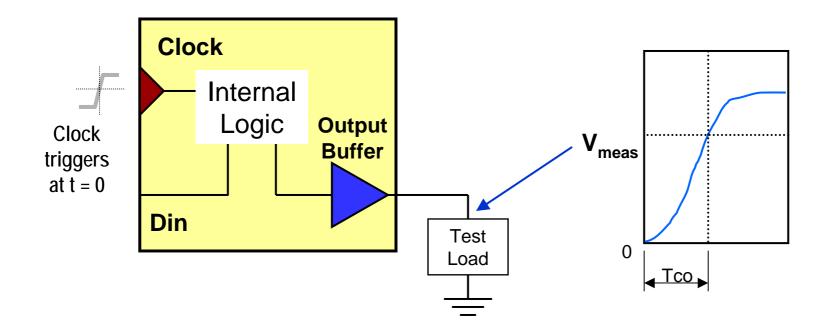
- Is delay1 flight time?
- What are delay2 and delay3?

ZTE中兴

Flight Time Simulation with IBIS


Cautions

- Check component datasheet and IBIS model
- Avoid double counting C_comp and load
- Receiver thresholds



IBIS vs. Datasheet Consistency

Test loads should match

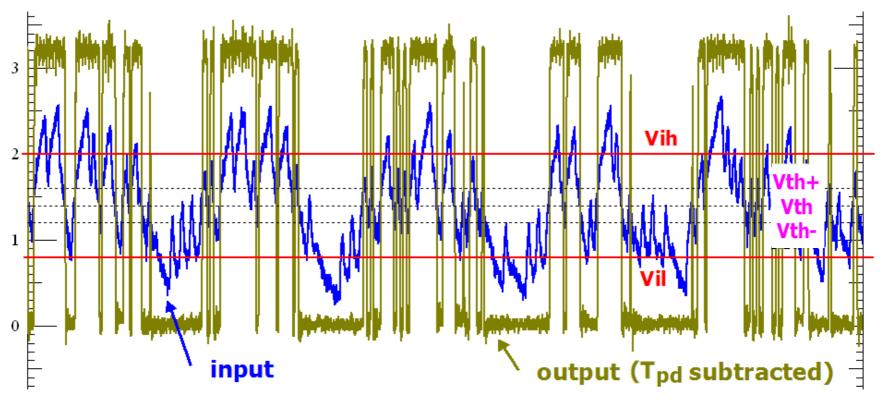
Tco Measurement

Avoid Double Counting

- Avoid double counting output C_comp
- Avoid counting both test load and load
- Method 1
 - Compensate from simulated flight time
- Method 2
 - Subtract their effect from Tco

Negative Flight Time

- Negative flight time happens when
 - Test load for Tco measurement is heavier than actual load
 - The interconnect is short


Include Corners in Simulation

- Parts behave diversely
- Simulate including strong and weak buffers

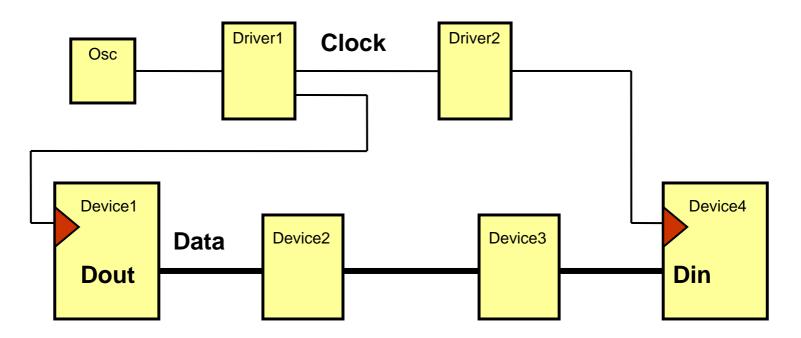
Receiver Thresholds

Test example

Receiver Thresholds

- Use Vih and Vil as initial choice
- Use Vth when available
- IBIS Ver 4.0
 - [Receiver Thresholds] sub-parameters
 - Vth,Vth_min,Vth_max
 - Vinh_ac,Vinl_ac,Vinh_dc,Vinl_dc
 - Tslew _ac

Guard Band Time


Effects likely not included in your simulation

- Simultaneous switching output
 - Ver4.0 and earlier models do not include SSO in data tables
- Crosstalk
- Inter-symbol interference
- Power supply noise
- Guard band time ensures margins existence
- Obtained from simulation or measurements

Deal with Complex Topology

Example

Deal with Complex Topology

- Adding components in path
 - Path delay deviations increase
 - Timing margins decrease
 - Alternative analysis methods are needed to put the simulated interconnection delays together

Timing Analysis Methods

- Worst case timing analysis
- Statistical timing analysis
 - Root Sum Square timing analysis
 - Monte Carlo timing analysis

Worst Case Timing

- Path delay
 - Maximum worst-case path delay

 $t_{\text{path}} \max \text{ worst - case delay} = t_p \max(\text{device 1}) + t_p \max(\text{device 2}) + t_p \max(\text{device 3}) + \dots + t_p \max(\text{device N}) + t_p \max(\text{interconnect1}) + t_p \max(\text{interconnect2}) + t_p \max(\text{interconnect3}) + \dots + t_p \max(\text{interconnectN})$

• Minimum worst-case path delay

 $t_{\text{path}} \min \text{worst}$ - case delay = $t_p \min(\text{device } 1) + t_p \min(\text{device } 2) + t_p \min(\text{device } 3) + \dots + t_p \min(\text{device } N) + t_p \min(\text{interconnect1}) + t_p \min(\text{interconnect2}) + t_p \min(\text{interconnect3}) + \dots + t_p \min(\text{interconnectN})$

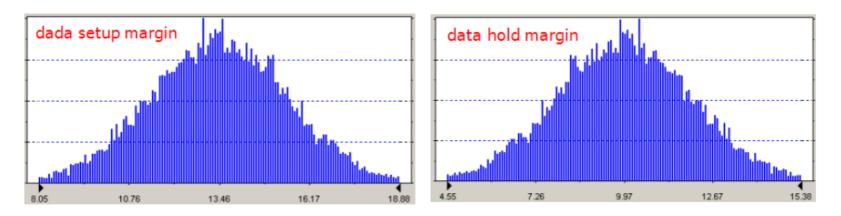
Statistical Timing Analysis(1)

Root sum square timing analysis

Maximum RSS path delay

 $t_{\text{path}} \max \text{RSS delay} = t_{\text{path}} \text{typ} + \sqrt{(t_p \max 1 - t_p \text{typ} 1)^2 + \dots + (t_p \max N - t_p \text{typ} N)^2}$

• Minimum RSS path delay


 $t_{\text{path}} \min \text{RSS delay} = t_{\text{path}} \text{typ} - \sqrt{(t_p \text{typ}1 - t_p \min 1)^2 + \dots + (t_p \text{typ}N - t_p \min N)^2}$

Statistical Timing Analysis(2)

Monte Carlo timing analysis

 By random sampling delay values determines the timing attribute probability distribution

Conclusion

- Cautions with simulation in tight timing budget system
 - Check component test load
 - Avoid double counting
 - Receiver thresholds

Simulated results analysis methods

- Worst case
- RSS
- Monte Carlo

References:

James E. Buchanan , " *Signal and Power Integrity in Digital Systems* (*TTL, CMOS, & BiCMOS*)", McGraw-Hill Inc., ISBN 0-07-008734-2

Stephen H. Hall, "*High speed Digital Systems Design*", McGraw-Hill Inc., ISBN: 0-471-36090-2

Todd Westerhoff, " *Closing the loop between timing analysis and signal integrity*" Cadence Design System

