Three Facets of IBIS: Interface, Behavior and Measurement

December 2005

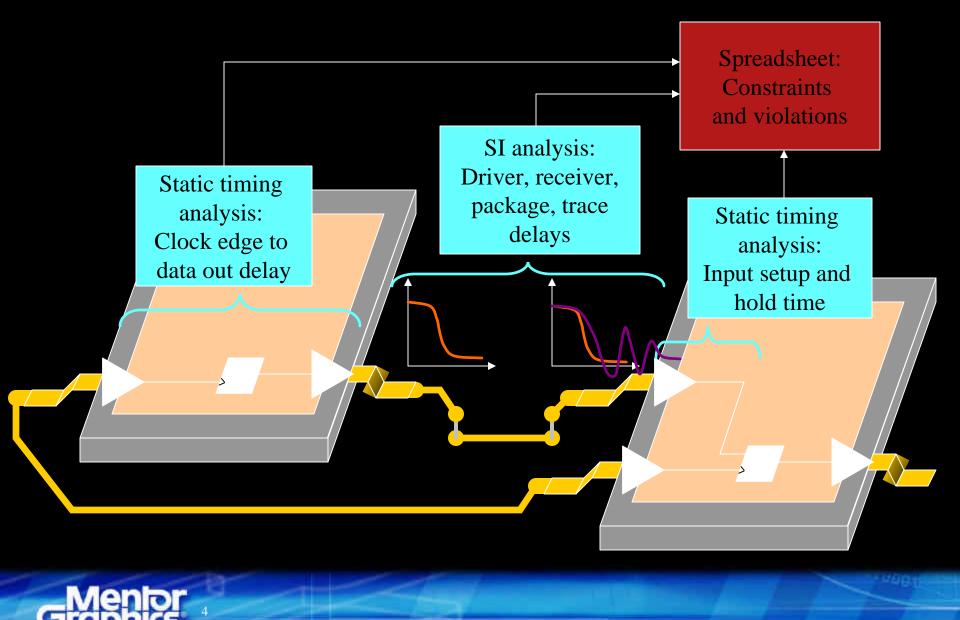
R

Ian C Dodd Architect, High Speed Tools SDD Division Henry Li Technical Marketing Engineer Mentor Graphics (Shanghai) Electronic Technology Co Ltd

What are the Objectives of the SI Engineer?

- Maximize performance
 - Highest possible clock speed
- Ensure reliable operation
 - Meet timing constraints
 - Keep overshoot below levels that will cause device malfunction or destruction.
 - Maintain adequate switching margins
- Minimize per unit costs
 - Minimize the number of components (including terminators)
 - Use lowest cost PCB materials

Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.


How can these objectives be met?

- By investing in accurate timing and SI analysis so that safety margins can be controlled
 - Accurate static or dynamic timing models for the internal paths of active devices
 - **—** Accurate SI models for drivers, loads and passive devices
 - Accurate models for the interconnect including the associated dielectrics
 - Using fully automated analysis tools so all vulnerable nets can be analyzed

Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.

Basic timing analysis

Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.

Part One: Summary of IBIS to version 3.2

Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.

Highlights of IBIS 3.2 Behavior

- IBIS 3.2 assumes fixed topologies for drivers, inputs and terminators
- Support process range: Typ, Min & Max
- Drivers and Inputs
 - Two steady state Current versus Voltage (IV) tables representing power and/or ground clamps.
 - Capacitance
- Drivers
 - Nominal edge rates
 - Two additional steady state Current versus Voltage (IV) tables representing pull-up and pull-down transistors.
 - Optional Dynamic Voltage versus Time (VT) tables
 - Load conditions must be specified for each table

Highlights of IBIS 3.2 Behavior (continued)

- Series and Parallel Terminators
 - **Resistance, Capacitance and Inductance**
- Package Description
 - Assumes each external pin connects to one internal (die) pin
 - Default Package
 - Assumes no coupling: simple resistance, capacitance and inductance
 - Package Model
 - Allows multiple sections, each with coupled or uncoupled: resistance, capacitance and inductance

Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.

IBIS 3.2 Interconnect

- Provides mapping of the pins on a physical part to the models providing electrical behavior.
- Allows EDA tools to automatically build complete simulation models for nets on your PCB
 - Less error prone than creating simulation netlists manually
 - Allows for simulation coverage of the majority of nets on your PCB.

Highlights of IBIS 3.2 Interconnect

IBIS Pin Section

- Assigns driver, load and parallel terminator models to pins

Series Pin Mapping Section

– Assigns series terminators (and switches) to pins

Diff Pin Section

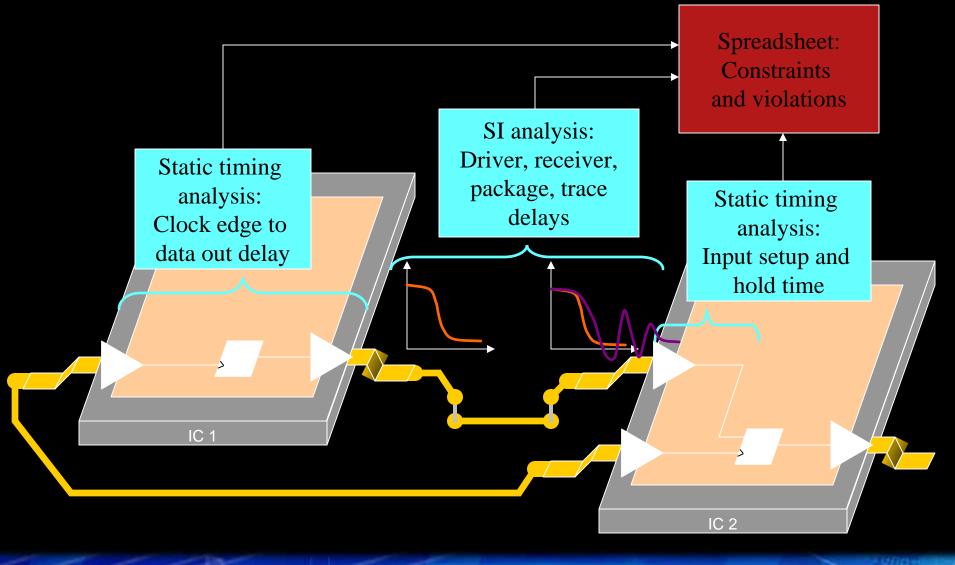
- Identifies differential pin pairs & adds differential delay info

- Electrical Board Description (EBD)
 - **Limited description of a PCB containing IBIS components**
 - **Does not support modeling of trace to trace coupling.**

Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.

Highlights of IBIS 3.2 Measurement

Overshoot limits


- If exceeded device may malfunction or be destroyed
- Static and dynamic

Input switching thresholds

- Logic low
 - Vinl (or with hysteresis Vinl+ and Vinl-)
- Logic high
 - Vinh (or with hysteresis Vinl+ and Vinl-)
- Timing Reference Voltage (Vmeas)
 - Transition voltage on driver pin used when measuring static timing delays e.g. "clock edge to data out"
 - Associated with a reference load
 - Vref, Rref and Cref

Basic timing analysis

Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.

Putting it all together with IBIS 3.2

- Simple synchronous example
 - First consider the data path
- Simulate the data path for the rising and the falling edges
 - Find the time at which the input pin on U2 leaves the initial logic state (raw minimum delay)
 - Find the time at which the input pin on U2 becomes stable at the final logic state (raw maximum delay)
- Simulate the driver connected to the timing reference load
 Find the time to Vmeas
- Normalize the raw delays by subtracting the time to Vmeas
 - Removes any initial delay in VT table and partial edge time already included in the "clock edge to data out" delay.

Including Clock Skew

Determine Clock Period

Tclock

- Simulate Data Path
 - Find Normalized Data Path Delays
 - **TD**data_min, **TD**data_max for rising and falling edges
- Simulate Clock Paths
 - Clock Driver to Clock Input on IC1
 - **TD**clock1_min, **TD**clock1_max for active edge
 - Clock Driver to Clock Input on IC2
 - TDclock2_min, TDclock2_max for active edge
- Get Internal Path Delay and Minimum Setup and Hold constraints from Databook
 - **TD**path, Tsetup_min, Thold_min

Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.

Including Clock Skew (continued)

Worst Case Analysis

Calculate the actual setup and hold times for the rising edge Compare the results to the timing constraints from the databook Repeat for the falling edge

Tsetup = Tclock - TDdata_max + TDclock2_min - TDclock2_max

Thold = Tclock - TDdata_min + TDclock2_max - TDclock2_min

EDA tools that have integration between timing and SI analysis commonly have spreadsheets that automate these calculations and highlight timing violations

Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.

Part Two: Beyond IBIS Version 3.2

Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.

Technology Changes

- **Data rates on PCB have dramatically increased.**
- PCB trace lengths have not shrunk in proportion
 - clock periods are often shorter than the interconnect delay
 - Source synchronous design must be used either with a separate clock signal or with an embedded clock
- Power budgets have decreased
 - **—** Signaling voltages have been accordingly decreased
- PCB materials have not dramatically improved
 - **Dielectric losses become the predominant circuit effect**
 - **Differential signaling is required to overcome attenuation**
 - Pre-compensation or equalization is becoming common to compensate for wavefront distortion

Highlights of Post IBIS 3.2 Behavior

- ICM provides multi-stage coupled lossy transmission line or S-parameter modeling for connectors
 - Presently considering allowing ICM package descriptions so we can have consistent S-parameter support
- Multi-lingual extensions support behavior modeled in SPICE, VHDL-AMS and Verilog-AMS.
 - Almost no limit to the complexity of behavior that can be modeled
 - Depending on the simulator, model types can be mixed across the PCB and even on individual nets
- Power Integrity extensions

Highlights of Post IBIS 3.2 Interconnect

- Multi-lingual extensions provide flexible connectivity between SPICE, VHDL-AMS or Verilog-AMS models and the external component pins
 - Allows EDA tools to automatically build complete simulation models for nets on your PCB including the multi-lingual models

Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.

Existing Post IBIS 3.2 Measurement

- No enhancements to IBIS built in measurements since version 3.2
- Multi-lingual input models can determine when a transition has occurred
 - External models and circuits for inputs have a standard terminal which can be monitored by EDA tools
- Multi-lingual models can do extensive analysis and use (external circuit) terminals to present the results of analysis
 - No conventions as to how an EDA tool should interpret signals on these terminals
 - Cannot presently be used for automated analysis or to populate constraint spreadsheets

Recommendation for New IBIS Measurements

- We want to validate a high percentage of nets on PCBs
 - Requires automated measurement and constraint validation
 - IBIS is needed to provide the interface and measurement functions even when SPICE or AMS descriptions are used for behavior
- Measurement enhancements
 - Support measurements specified for any IBIS external pin or internal terminal
 - Provide voltage or current thresholds
 - Provide logic and equations that the EDA tool should use to determine values to be reported
 - Provide limits for reported values

Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.

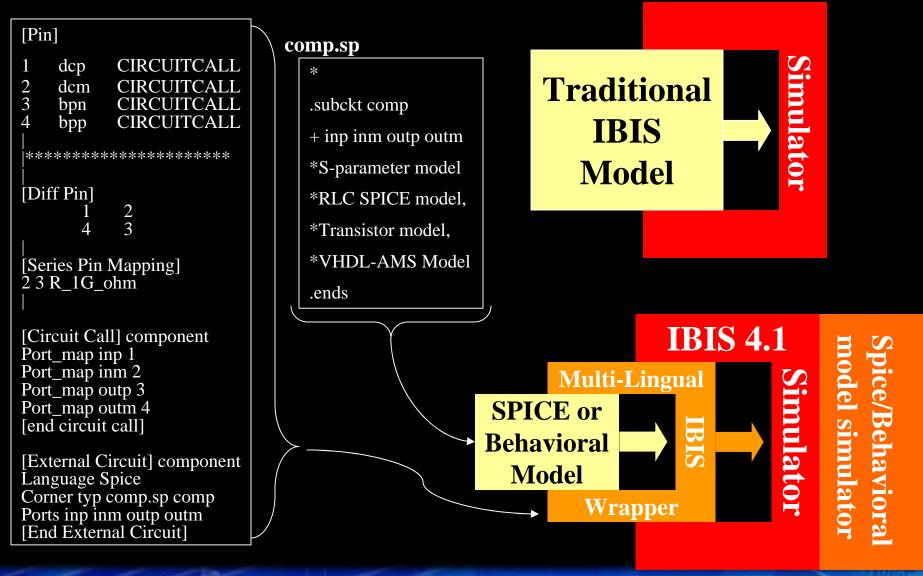
Part Three: IBIS 4.1 Multilingual Example

Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.

Typical IBIS 4.1Model

•IBIS 4.1 adds four new keywords

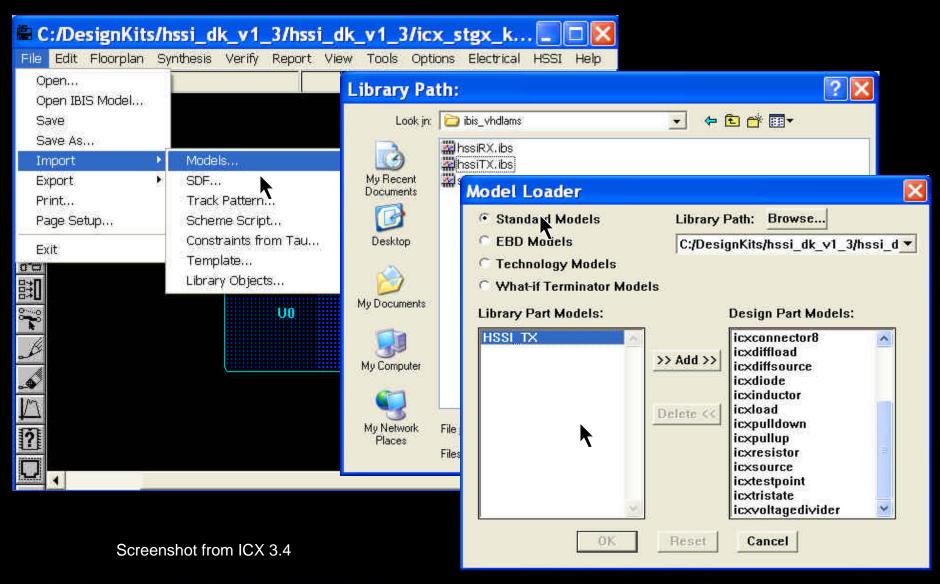
[External Model] (new part of [Model])


[External Circuit]

•[Circuit Call], [Node Declarations]

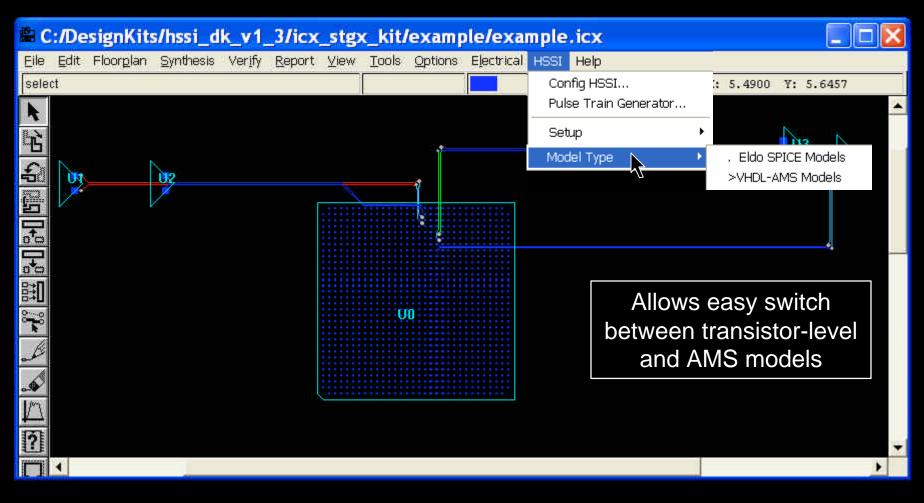
•Spice/Behavioral model is in external file

[Model] ExBu Model_type Polarity Vmeas = 0.79 Rref = 1Mol Vref = 0V	Output_diff Non-Inverting 5V			
IBIS [Voltage Ram	nge] 3.3 3.0 3.6			
[External Model] Language VHDL-AMS				
IBIS Corner Ty Corner M:	rner_name file_name circuit_name entity(architecture) yp buffer_typ.vhd buffer(buffer_io_typ) in buffer_min.vhd buffer(buffer_io_min) ax buffer_max.vhd buffer(buffer_io_max)			
Syntax Parameters List of parameters Parameters delay rate Parameters preemphasis				
Ports List of port names (in same order as in VHDL-AMS) Ports D_control A_signal_neg A_signal_pos				
[End Externa	[End External Model]			
Montre				


IBIS 4.1 Traditional and Multi-Lingual

Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.


Import like any other IBIS model


Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.

And PROBE, just like any IBIS model

Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.

IBIS 4.1 Supports BOTH Transistor-level and AMS Models

Screenshot from ICX 3.4

Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.

IBIS 4.1 "Parameters" Provide for Automation

	/DesignKits/hssi_dk_v1_3/icx_s			
Eile selec	<u>E</u> dit Floor <u>p</u> lan <u>S</u> ynthesis Ver <u>i</u> fy <u>R</u> eport ⊻ t	ew <u>T</u> ools Q	Pulse Train Generator 2.3.1	
11	-	4	File PRBS Fibre Channel	
			Pattern Name PRBS7per0_32 Initial Delay 1.0 ns	
B			Pulse Train Type	
-	0902		User Defined Bit Pattern 111001101000100111100 Bit Duration 5.0	ns
50 dt			Random Number of Bits 127 Bit Duration .32 ns	
** ====================================	🗟 HSSI Configuratio 🔳 🗖 🔀		Clock Period 5.0 ns Duty Cycle 50 %	
o*œ	Temperature 30 °C		Jitter Options	
い	Pre-Emphasis Duration 320 ps		Jitter Peak-to-Peak Value 100 ps	
3	Pre-Emphasis Level .	CH0		
Æ	Driver Termination 100 💌 Ohms			
	Vod (p-p) 1.0 💌 Votts			
	Receiver Equalization Level 0 🔹 .			
	Receiver Termination 100 🔻 Ohms			
	AC coupled nets			
	Use FPGA Design Settings			1
	OK Cancel		< ZOOM >	
	Screenshot from ICX 3.4		OK Cancel	

27

Three Facets of IBIS: Interface, Behavior and Measurement, IBIS Open Forum, December 2005.

www.mentor.com