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Speaker Introduction



Power Distribution Network (PDN)
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Voltage ripple

IC switching current

[Kim et al. 2009]

• PDN design is important to reduce voltage supply noise caused by IC switching 
current and ensure power integrity for IC

• Decoupling capacitors (decaps) are utilized to reduce PDN impedance so as to 
reduce voltage ripples

Minimize PDN impedance



PDN Impedance Modeling
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Cavity model [Kim et al. 2010]

Equivalent circuit for power net area fill 

LPCB_Plane

Plane-Pair PEEC (PPP) Model [Wei et al. 2016]

• Cavity model: can only handle 
rectangle power plane shapes

• PPP: Relatively time-consuming

A fast calculation approach for multi-layer PDN with 
irregular board shapes is desired!!!



Objective: Deep Learning for PDN Impedance Prediction
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Train a deep learning model that can predict the PDN impedance given any:

• Board shapes

• Stackup

• IC location

• Decap placement



Boundary Integration for PDN Impedance Calculation
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VRM port

IC port

• A boundary integration method is adopted to calculate PDN impedance for 
arbitrary shape and stackup from DC to AC

• The boundary integration method is much faster than full-wave simulations

o L. Zhang, J. Juang, Z. Kiguradze, B. Pu, S. Jin, S. Wu, Z. Yang, and C. Hwang, “Efficient DC and AC Impedance Calculation for Arbitrary-shape and Multi-layer
PDN Using Boundary Integration,” IEEE Trans. Electromagn. Compat., to be submitted.

o M. Friedrich and M. Leone, “Boundary-Element Method for the Calculation of Port Inductances in Parallel-Plane Structures,” IEEE Trans. Electromagn.

Compat., vol. 56, no. 6, pp. 1439-1447, Dec. 2014.



Generate Random Shape & Stackup
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Generate random 2D shape Generate random stackup

o https://stackoverflow.com/questions/50731785/create-random-shape-contour-using-matplotlib

o L. Zhang, J. Juang, Z. Kiguradze, B. Pu, S. Jin, S. Wu, Z. Yang, and C. Hwang, “Fast PDN Impedance Prediction Using Deep Learning,”
International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, accepted with minor revision.



Decap Library
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Type #

Decap Parameters

Capacitance 
(uF)

ESL (nH) ESR (mΩ) Serial number (Murata) Size

1 0.1 0.19 34.7 GRM033C80J104KE84 0201

2 0.47 0.18 18.3 GRM033R60J474KE90 0201

3 1 0.22 15.2 GRM155B31C105KA12 0402

4 2.2 0.20 7.2 GRM155C70J225KE11 0402

5 4.7 0.28 7.1 GRM185C81A475KE11 0603

6 10 0.26 5.2 GRM188R61A106KAAL 0603

7 22 0.27 4.0 GRM188B30J226MEA0 0603

8 47 0.15 2.9 GRM219D80E476ME44 0805

9 220 0.41 1.9 GRM31CR60J227ME11 1206

10 330 0.46 1.2 GRM32EC80E337ME05 1210



Matrix Representation
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Board contour Board shape + IC location

Top decaps Bottom decaps

Stackup

1D matrix

• Board information: 16×16 matrices

• Stackup (4~9 layers): 1×17 matrix

• Maximum size: 200mm×200mm; number of 
decap locations: 20

• IC and decap locations are generated randomly

• One unit contains one horizontal decap

L. Zhang, et al., International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, accepted
with minor revision.



CNN Training
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Convolutional neural network (CNN) structure:

• 1.3 million board data are generated, 10,000 used for testing

• Output: dB value is used

• Loss function: root mean square error (RMSE)

• Learning rate: 0.0001; Adam optimizer; batch size 128

• Training time: 80 hours (1 NVIDIA Tesla K80 GPU)

L. Zhang, et al., International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, accepted
with minor revision.



Test Trained Model
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• RMSE for the testing data is just 
around 1dB

• Two testing cases are randomly 
picked and plotted here

Methods Case #1 Case #2
Full-wave 35 min 40 min

BEM 10 s 30 s
DNN 0.1 s 0.1 s

L. Zhang, et al., International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, accepted
with minor revision.



Summary
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• A deep learning model is developed to fast predict the PDN impedance for 
arbitrarily-shaped power plane and arbitrary stackup

• The trained model can predict PDN impedance within 0.1s with a tolerable 
accuracy

• Code link on GitHub: https://github.com/lingzhang0319/PDN-Impedance-
Prediction-Using-Deep-Learning/tree/master

https://github.com/lingzhang0319/PDN-Impedance-Prediction-Using-Deep-Learning/tree/master
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