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 Data rates in serial link systems keep growing, reaching 100 Gb/s and beyond 

 Channel losses and higher-order modulation (PAM4) necessitate more extensive equalization 

 ADC-based SerDes architectures are becoming prevalent 

 Equalization is divided between analog and digital domains 

 This allows for extensive digital equalization that scales well with process nodes 

 Digital equalization leads to a deviation from conventional (non-ADC-based) SerDes 

 IBIS-AMI models remain de-facto technical link between SerDes vendors and system integrators 

 IBIS-AMI modeling relies on conventional (non-ADC-based) architectural assumptions 

 Architectural misalignments make it challenging to build IBIS-AMI models for ADC-based SerDes 

 What are these challenges? What are possible ways to address these challenges? 

Motivation 
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 Decouple model from simulator by standardizing the interface 

 Decision point: equalized analog waveform at M samples per UI 

 Simulator evaluates link margin in statistical and time domains 

 Sampler performance is communicated through margin/eye mask requirements 

 Simulator accounts for additional noise and jitter sources 

IBIS-AMI Framework 
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 Time-interleaved (multi-path) ADC takes 1 sample per UI and de-muxes samples 

 Mueller-Müller baud-rate CDR recovers clock from equalized ADC samples 

 FFE, DFE, CDR are all in a DSP block that operates on de-muxed data, 0.5-1.0 GHz 

 This does not fit well into IBIS AMI framework 

ADC-Based SerDes Topology 
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COM as SerDes Definition Tool 
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Pass/fail

MATLAB

PROS 

 Vetted by a large number of experts 

 Generic parametrized model 

 Spec details come from spreadsheet 

 Runs in MATLAB, code is available 

 Quick simulation iterations 

CONS 

 Lacks ADC, non-linearities 

 Lacks clock recovery details 

 Non-expandable for detailed modeling 

 No time domain effects captured 

 Intended for analog architectures 
 



COM Implementation Margin 
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COM Implementation Margin 
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FAIL 
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 Similar to IBIS-AMI, COM was intended for conventional analog-centric SerDes architectures 

 COM uses a fully-equalized pulse response as a starting point for SNR analysis 

 Some non-linear and time-varying (non-LTI) effects are accounted for as SNR penalty 

 However, COM abstracts away SerDes implementation details 

 COM focuses on equalization performance of the reference SerDes model 

 Digital FFE and DFE are approximated as a full-rate equalizers 

 As a result, a fully-equalized pulse response is available in COM 

 ADC-related performance penalty is covered by the implementation margin 

 Can we build ADC-based IBIS-AMI models using a similar approach? 

 Can we add ADC performance penalty explicitly in time domain simulations? 

COM and ADC-based SerDes Architectures 

14 



 Includes same components as COM reference TX, supports statistical and time domain simulations 

 COM-parametric IBIS-AMI TX model with two intended use cases 

 Can be configured to represent a standard-compliant TX 

 Can be configured to represent measured TX performance 

TX Model Block Diagram 
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 Statistical 

 Recover clock phase from pulse response with MM CDR 

 Adapt equalization: CTLE, FFE, DFE 

 Re-adjust recovered clock phase after adaptation 

 Time domain 

 ADC is a time-agnostic quantizer 

 Mueller-Müller CDR runs continuously, maintains phase lock 

 Equalization parameters are constant during transient simulation 

COM-Representative ADC-Based RX Model 
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 A script converts COM CTLE definition into GPZ matrices for CTLE stages 

 Automatically update block properties in Simulink and range of AMI parameters 

 In a similar way, CTLE can be configured to represent actual circuit performance 

CTLE Configuration 
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Simulink model

H_hp

High-pass

CTLE H_r

Boost RX BW

MATLAB script

% General
COM.f_b     = 53.125*GBps  ; % Baud rate               , Baud/s

% CTLE
COM.f_r     = 0.75         ; % RX BW filter            , Frac. of f_b
COM.g_DC    = -20:1:0      ; % CTLE DC gain            , dB
COM.f_z     = COM.f_b / 2.5; % CTLE zero   frequency   , Hz
COM.f_p1    = COM.f_b / 2.5; % CTLE pole 1 frequency   , Hz
COM.f_p2    = COM.f_b      ; % CTLE pole 2 frequency   , Hz
COM.g_DC_HP = -6:1:0       ; % High-pass DC gain       , dB
COM.f_HP_PZ = COM.f_b /80.0; % High-pass pole/zero freq, Hz

GPZ_HP GPZ_CTLE GPZ_HR



CTLE Set of Transfer Functions 
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%% COM parameters 

COM.f_b  = 53.125*GBps   ; 

COM.g_DC = -20:1:0       ; 

COM.f_z  = COM.f_b / 2.5 ; 

COM.f_p1 = COM.f_b / 2.5 ; 

COM.f_p2 = COM.f_b       ; 

COM IBIS-AMI 



 Non-linearity is added to the data path between CTLE and ADC 

 ADC is a quantizer, need voltage (not bits) at output to play well with IBIS AMI flow 

 Resolution and dynamic range are the ADC parameters 

Non-Linearity and ADC 
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%% ADC params 

ADC.res   = 4     ; % bits  

ADC.range = 250*mV; 

%% Non-Linearity params 

NL.VinVout = [ 

-0.60  -0.2459 

-0.55  -0.2439 

-0.50  -0.2410 

 ... 

 0.60   0.2459]; 



 Use equalized pulse response to guide the adaptation 

 Using Mueller-Müller phase detection for FFE & DFE zero-forcing 

 FFE is “aware” of DFE: FFE brings Tap 1 to be within DFE range, similar to COM 

Adaptation in Statistical Domain 
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 RX noise and jitter can be added by the simulator to RX model outputs 

 This impacts eye margins calculated by the simulator 

 However, RX noise is not visible to SNR monitor inside RX 

 We would like to account for output-referred noise for adaptation and correlation 

 Therefore, input-referred noise needs to be added to the model 

RX Noise Impact on SNR 

21 

RX Jitter

RX Model Simulator

SNR

RX Noise

DFECDR
Eye 

Margins

clock

wave_out



 Input noise 

o White noise up to simulation BW 

o Noise PSD is a parameter in COM spreadsheet, eta_0 

 Output noise 

o Apply linear EQ to filter noise 

o Integrate filtered noise in frequency to get RMS value 

o Output RMS noise degrades adaptation FoM (SNR) 

 However… 

o Adaptation is done in statistical part of the model 

o Statistical domain is intended for impulse processing 

o Need to get output noise PSD using only impulse processing 

RX Noise in Statistical Adaptation 
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 Use a unity impulse to “probe” response of linear EQ blocks: CTLE, VGA, FFE 

 FFT to convert noise path IR to frequency domain 

 Scale noise TF by input PSD, integrate up to 100 GHz to get output noise RMS 

 This noise methodology correlates well with COM and time domain simulations 

RX Noise in Statistical Adaptation 
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 Converting noise path IR to frequency domain after every equalization stage 

 This illustrates noise shaping progression through the RX 

RX Noise in Statistical Adaptation 
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 Measures SNR at UI centers, supports NRZ and PAM4 

 Drives adaptation in statistical domain; correlation parameter with COM in time domain 

 Used for post-Si SNR correlation with SerDes IP 

SNR Measurement Block 
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 Since ADC is modeled as a blind oversampling quantizer, the eye diagram is available (similar to COM) 

 Only vertical eye opening (amplitude histogram) at the sampling instance carries quantitative 

information 

 Horizontal eye opening (time histogram) carries only qualitative information in this eye diagram 

Eye Diagram in COM-Representative Models 
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 Since ADC is modeled as a blind oversampling quantizer, the eye diagram is available (similar to COM) 

 Only vertical eye opening (amplitude histogram) at the sampling instance carries quantitative 

information 

 Horizontal eye opening (time histogram) carried only qualitative information in this eye diagram 

Eye Diagram in COM-Representative Models 
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 Analog equalization, CTLE & VGA, operates on continuous-time waveform 

 Digital equalization, FFE & DFE, operates on discrete-time samples at UI centers 

 Partially-equalized analog waveform needs to be sampled in time, and converted to digital 

representation 

 For practical DSP implementation, it operates on frames of parallel samples at a lower frequency 

ADC-based RX Block Diagram 
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 N time-interleaved ADCs sample at the rate of 1/N each, requiring N-phase recovered clock  

 ADC samples capture information at UI centers, discard the rest of the waveform information 

 Time interleaving depth trades off ADC operating speed with circuit and clocking complexity 

ADC Time Interleaving Depth 

31 



 N samples at ADC output are demultiplexed into frames of K parallel samples 

 Digital equalization in DSP operates on sample frames at the rate of 1/K with respect to baud rate 

 Demultiplexing trades off DSP operating speed with data path latency, and clock recovery dynamics 

Sample Demultiplexing: 4:8 Ratio 
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Sample Demultiplexing: 6:64 Ratio, 875 MHz Output 
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Latency = 100 UIs = 1.8 ns 



 Parallel processing adds complexity to Simulink models 

ADC-Based RX Block Interfaces 
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 Parallel processing adds complexity to Simulink models 

 Exploring key design parameters is difficult in Simulink 

ADC-Based RX Block Interfaces 
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 Parallel processing adds complexity to Simulink models 

 Exploring key design parameters is difficult in Simulink 

 Proposed model enables low-effort parametric design-space exploration 

ADC-Based RX Block Interfaces 
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 Parallel processing adds complexity to Simulink models 

 Exploring key design parameters is difficult in Simulink 

 Proposed model enables low-effort parametric design-space exploration 

ADC-Based RX Block Interfaces 
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 Fully-equalized continuous-time waveform does not exit in ADC-based RX, cannot construct an eye 

diagram 

 Instead, fully-equalized UI-center samples are available, in frames of K-samples at 1/K rate – s_dfe 

 Full-rate clock that triggers a samples does not exist either 

 Instead, 1/N rate N-phase clock triggers the ADC at cumulative rate of 1 sample per UI – ck_rec 

 How to interface this with SI simulators that expect a fully-equalized waveform along with a full-rate clock? 

IBIS-AMI Interface with ADC-based RX 
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IBIS-AMI Bridge 
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 Multiplex frames of equalized samples, s_dfe, into baud-rate sequential samples, s_out, still at 1 S/UI 

 Up-sample to required number of samples per UI, M; amplitude remains constant within every UI 

 Output waveform, wave_out, is compatible with IBIS-AMI requirements, but carries no timing 

information 
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 Multiplex frames of equalized samples, s_dfe, into baud-rate sequential samples, s_out, still at 1 S/UI 

 Up-sample to required number of samples per UI, M; amplitude remains constant within every UI 

 Output waveform, wave_out, is compatible with IBIS-AMI requirements, but carries no timing 

information 

IBIS-AMI Bridge 
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 RX model captures all architectural and implementation details without IBIS-AMI constraints 

 IBIS-AMI bridge interfaces the detailed RX model with SI simulators 

 Only vertical eye opening (amplitude histogram) is available, consistent with ADC-based architectures 

Architecture-Representative ADC-Based RX Model 
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 RX model captures all architectural and implementation details without IBIS-AMI constraints 

 IBIS-AMI bridge interfaces the detailed RX model with SI simulators 

 Only vertical eye opening (amplitude histogram) is available, consistent with ADC-based architectures 

Architecture-Representative ADC-Based RX Model 
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 Conventional equalization cancels ISI, discarding received pulse energy outside the symbol boundaries 

 

Maximum Likelihood Sequence Estimation 
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Conventional Equalization 



 Conventional equalization cancels ISI, discarding received pulse energy outside the symbol boundaries 

 MLSE leverages residual ISI energy to improve SNR and BER 

 Pulse at MLSE input needs to contain known (controllable) amount of ISI 

 

Maximum Likelihood Sequence Estimation 
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Conventional Equalization MLSE 



 MLSE is a digital algorithm that operates on partially-equalized received samples, outputs data 

decisions 

 FFE is configured to drive equalization towards a target pulse as opposed to zero ISI 

 Since MLSE output has no timing or residual ISI (data symbols only), clock recovery loop uses FFE 

output 

RX with MLSE Block Diagram 
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 Significant 1st post-cursor ISI in pulse response leads level separation in eye diagram 

From Pulse to Eye Representation 
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 Significant 1st post-cursor ISI in pulse response leads level separation in eye diagram 

 +1 data symbol corresponds to two levels: +cursor ± post-cursor = +1.00 ± 0.25 amplitudes 

 –1  data symbol corresponds to two levels: –cursor ± post-cursor = –1.00 ± 0.25 amplitudes 

From Pulse to Eye Representation 
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 Eye diagram can be represented as a trellis segment 

 Vertices represent data symbols, edges represent transitions between symbols 

 Resulting amplitudes are assigned to trellis edges as expected amplitudes at destination nodes 

From Eye to Trellis Representation 
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 Partially-equalized waveform (sequence of samples) at FFE output forms a path through a trellis 

diagram 

 Deviation of observed from expected sample amplitudes forms edge cost or penalty 

 Trellis path with lowest cost (penalty) corresponds to a data sequence estimate with maximum 

likelihood 

 Algorithms similar to Viterbi are frequently used for trellis traversal 

Traverse Trellis for Sequence Estimation 

51 

+1.25 

+0.75 

−0.75 

−1.25 

+1

 1

+1

 1

+1

 1

+1

 1

+1

 1

+1

 1

+1

 1

+1

 1



 Larger ISI in target pulse leads to more significant eye closure, this NRZ eye resembles PAM4 eye 

 Even in noise-free case, SI simulators are unable to use MLSE input eye for link performance 

evaluation 

 This resemblance with PAM4 illustrates that MLSE allows to operate with lower equalization BW 

margins 

NRZ Eye at MLSE Input with [1.0 0.5] Target Pulse 

52 

+1.5 

+0.5 

−0.5 

−1.5 

+1 +1 

−1 −1 

+1.5 

−1.5 

+0.5 

−0.5 



 Signal (eye) at MLSE input is not usable for link performance evaluation in SI simulators due to residual 

ISI 

 MLSE output consists of a sequence of data symbols as opposed to equalized samples 

 For IBIS-AMI compliance, construct output waveform from the MLSE output symbols 

 This output carries neither timing nor amplitude information for link performance estimation 

 MLSE output eye carries symbol error information, while the RX model can provide estimated SNR 

MLSE Eye Diagram 
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Link Correlation: SNR/BER 
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 Measurable:  

 Raw BER is measurable in lab using BIST by 

counting errors between sent and received 

symbols 

 

 

 

 

 

 

 SNR can be simulated/calculated from 

IBIS-AMI simulation 

 BER indirectly mapped from SNR using 

relationship 

PAM4 signaling BER/SNR relationship 
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TX Correlation 
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Link Correlation: Setup 
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Link Simulation with RX Noise Sweeps 
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RX IBIS-AMI model block diagram 

Increasing  
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noise 

Increasing  

ADC noise 

CTLE input referred noise is amplified by the analog-front 

end chain and have more impacts on longer reach 

channel 
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Final Model to Lab Correlation 
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MLSE IBIS-AMI Model 
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MLSE IBIS-AMI Simulation 
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 Explored challenges of IBIS-AMI modeling for ADC-based SerDes architectures 

 Proposed three IBIS-AMI modeling methodologies for ADC-based SerDes 

 COM-Representative ADC-Based Models 

 Architecturally-Representative ADC-Based Models 

 Maximum Likelihood Sequence Estimation (MLSE) Models 

 Explored implication of these methodologies on model-simulator interface 

 Proposed SNR-based IBIS-AMI correlation methodology 

 Used proposed methodologies to build and correlate models for 1-112 Gb/s multi-standard SerDes 

 Two RX noise sources were used to drive model correlation 

o Loss-dependent noise at CTLE input 

o Loss-independent noise at ADC input 

 Resulting predictive IBIS-AMI models cover SerDes IP performance across measured PVT variation 

Conclusion 
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MORE INFORMATION 
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 www.serialinksystems.com 

 info@serialinksystems.com 

 Supporting material 

 https://www.mathworks.com/help/serdes/ug/adc-ibis-ami-model-based-on-com.html 

 https://www.mathworks.com/help/serdes/ug/architectural-112g-pam4-adc-based-serdes-model.html 
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