Enhanced Mpilog Model for Power Integrity Analysis

A. Girardi¹, I.S. Stievano²,:R. Izzi¹, T. Lessio¹, F.G. Canavero², I. Maio², L. Rigazio²

¹Numonyx Italy S.r.I., ² Politecnico di Torino, Italy

Ref. contacts: {antonio.girardi@numonyx.com, igor.stievano@polito.it}

MOCHA, MOdelling and CHAracterization for SiP - Signal and Power Integrity Analysis

□ European Project FP7-ICT-2007-1 (Jan 2008 – Dec 2009)

"Develop reliable modelling and simulation solutions for SiP design verification"

□ Partecipants:

- Numonyx Italy Srl (Italy) [Coordinator]
- Politecnico di Torino (Italy)
- Cadence Design Systems Gmbh (Germany)
- Agilent Technologies (Belgium)
- Universidade de Aveiro (Portugal),
- Microwave Characterization Center (France)

□ Work Packages

- IC power integrity model
- IC buffers' innovative modelling approach
- SiP design and verification EDA platform
- SiP signal integrity measurement platform

IC buffers' innovative modelling approach

- □ Recent applications (e.g., stacked SiP devices, → memories) exhibit large variation (30÷40%)
- State-of-the art models allow only for limited variations (10÷15% of the nominal power supply voltage)

Overcome current limitations of existing models

Achievements

- □ Availability of the General structure of the extended model for digital buffers @ IBIS Summit, **DATE 2008** Procedure for parameter estimation from simulation / measurement Model implementation in different formats □ Application to test cases (proprietary and third party devices) from simulation □ Systematic assessment for Accuracy
 - Efficiency

State-of-the-art Mπlog model structure

e.g., IC output buffer (single-ended)

□ 2-piece model representation

$$\begin{split} \mathbf{i}(t) &= \mathbf{w}_{\mathsf{H}}(\mathsf{v},\mathsf{vdd},t) \ \mathbf{i}_{\mathsf{H}}(\mathsf{v},\mathsf{vdd},\mathsf{d}/\mathsf{d}t) + \\ & \mathbf{w}_{\mathsf{L}}(\mathsf{v},\mathsf{vdd},t) \ \mathbf{i}_{\mathsf{L}}(\mathsf{v},\mathsf{vdd},\mathsf{d}/\mathsf{t}) \end{split}$$

 $i_{H,L}$: submodels accounting for buffer behavior @ fixed logic H and L state $w_{H,L}$: weighting signals for state switchings

□ Underlying (simplifying) assumptions

Model parameters computed for the **nominal power supply VDD**

Weighting signals $\rightarrow w_{H,L}(t)$ Submodels $i_{H,L} \rightarrow i_{H} = i_{H}(vdd-v,d/dt), i_{L} = i_{L}(v,d/dt)$

Enhanced model structure

(t) =
$$W_H(v,VDD,t)$$
 * $i_H(VDD-v)$ +
 $W_L(v,VDD,t)$ * $i_L(v,VDD)$ +

w_{H,L}(t - <mark>T(vdd)</mark>)

 Include the dependence of switching events on vdd i_{H,L}(v,vdd,d/dt) = k_{H,L}(vdd) * i_{H,L}(v,VDD)

- Must depend on both v and vdd
- Simple yet accurate solution: approximate a complex 2D relation with a 1D curve * coefficient
- □ differences in two terms only
- no additional characterization required
- improved accuracy
- **a** same complexity

Parameter estimation

Step 1: follow the same procedure for the estimation of the classical $M\pi \log model$

- Device is conveniently stimulated and reaction is recorded
- Device responses to fit model responses via optimization algorithms

... from simulation

[1] I. S. Stievano et Al., "Behavioral models of IC output buffers from on-the-fly measurements," IEEE Transactions on Instrumentation and Measurement, vol. 57, No. 4, 2008.

...from measured data

[2] I. S. Stievano et Al., "Behavioral modeling of digital devices via composite locallinear state-space relations," IEEE Transactions on Instrumentation and Measurement, Vol. 57, No. 8, 2008

Parameter estimation, cont'd

Step 2: compute the two additional parameters

... from simulation

Parameters computed from the transistor level responses of buffer transistor-level model (parameters as tabular data)

...from measured data

Use analytical approximations from basic MOS equations (parameters as functions)

Model implementation

Model equations have been implemented in SPICE and hardware description languages

e.g, Verilog-A

```
module drvmod(v,vdd,ref,w1,w2,w3,w4,di,ref2);
electrical v,vdd,ref,f1,f2,f3,f4,f6,ref2,myVo;
parameter real VDD=2.5;
analog
    V(myVo) <+ V(v,ref)-V(vdd,ref)+VDD;
    drvmod_core DRVCORE(v,vdd,ref,w1,w2,w3,w4,di,f1,f2,f3,f4,f6);
    drvmod_fH DRV1(f1,myVo,ref2);
    drvmod_fL DRV2(f2,v,ref2);</pre>
```

```
endmodule
```


Enhanced model performance

Current vs. enhanced models

 $i(t) = w_H(v,vdd,t) i_H(v,vdd,d/dt) + w_L(v,vdd,t) i_L(v,vdd,d/t)$

Model	Submodels i _{H,L}	Weighting signals w _{H,L}
Mπlog	i _{H,L} (v,VDD,d/dt)	w _{H,L} (t)
Enhanced Mπlog	i _{H,L} (v,vdd,d/dt)	w _{H,L} (t-τ(vdd))

no additional characterization required

□ same complexity \rightarrow same speed-up (10 ÷ 100x)

eme group

Validation test cases

First test case:	512Mb NOR Flash memory in 90nm technology
	(Numonyx proprietary device)

Second test case: 512Mb DDR third party device, in 70nm technology and clock frequency of 133MHz

Third test case:Test chip designed by Numonyx in 90nm
technology, with a Low Power DDR interface for
I/O buffers and a clock frequency of 166MHz.

Same results (accuracy and efficiency) for the three examples!

Simulation test setups

Setup (B)

RLC PKG: R=200mΩ, L=10nH, C=0.5pF

:::::: emc group

Accuracy – 2nd test case (Setup A)

POLITECNICO DI TORINO

: emc group

Accuracy – 2nd test case (Setup B)

POLITECNICO DI TORINO

: emc group

Accuracy figures, 2nd test case

eme group

	Setup (a), second test case		Setup (b), second test case	
	Max rel. timing error on $v_1(t)$ (low-to-high event)	Max rel. timing error on v ₁ (t) (high-to-low event)	Max rel. timing error on $v_1(t)$ (low-to-high event)	Max rel. timing error on v ₁ (t) (high-to-low event)
IBIS	37 %	10 %	87 %	25 %
MPILOG	6 %	12 %	75 %	12 %
	Max relative error of vddq(ref.)-vddq(model)	Max relative error of gndq(ref.)-gndq(model)	Max relative error of vddq(ref.)-vddq(model)	Max relative error of gndq(ref.)-gndq(model)
IBIS	47 %	38 %	71 %	50 %
MPILOG	14 %	14 %	32 %	31 %
	Standard deviation of vddq(ref.)-vddq(model)	Standard deviation of gndq(ref.)-gndq(model)	Standard deviation of vddq(ref.)-vddq(model)	Standard deviation of gndq(ref.)-gndq(model)
IBIS	195 mV	170 mV	302 mV	250 mV
MPILOG	99 mV	110 mV	103 mV	103 mV

Application: Eye diagrams

□ DDR, second test case

Application: Eye diagrams

□ DDR second test case

	Setup (a), second test case		Setup (b), second test case	
	Eye opening	Error	Eye opening	Error
Reference (trans. level)	73.8%	-	72%	-
IBIS	46.2 %	38.3 %	78.8 %	9.5 %
MPILOG	77.6 %	3.75 %	73.8 %	2.5 %

DDR third test case

Setup (a), third test case		Setup (b), third trst case	
Eye opening	Error	Eye opening	Error
70.2%	-	64%	-
80.6 %	14.8 %	70.8 %	10.6 %
76 %	5.3 %	65.8 %	2.8 %
	Eye opening 70.2% 80.6 % 76 %	Eye opening Error 70.2% - 80.6 % 14.8 % 76 % 5.3 %	Eye opening Error Eye opening 70.2% - 64% 80.6 % 14.8 % 70.8 % 76 % 5.3 % 65.8 %

: emc group

Conclusions

- Generation of enhanced device models for large VDD variations (>30%); tabular data or simplified analytical equations to account for vdd
- □ High accuracy verified on realistic tests
- □ High efficiency
 - e.g., 2nd test case, setup (A)

	CPU time	Speed-up
Reference	773 s	-
IBIS	13 s	59 x
MPILOG	31s	25 x

emc group

Mπlog modeling tool (ver. 5.2) freely available for downloading @ www.emc.polito.it

Accuracy – 1st test case (Setup A)

Accuracy – 1st test case (Setup B)

Accuracy figures, 1st test case

	Setup (a), first test case		Setup (b), first test case	
	Max rel. timing error on v ₁ (t) (low-to-high event)	Max rel. timing error on v ₁ (t) (high-to-low event)	Max rel. timing error on v ₁ (t) (low-to-high event)	Max rel. timing error on v ₁ (t) (high-to-low event)
IBIS	36%	12 %	70 %	47 %
MPILOG	7 %	26 %	7 %	50 %
	Max relative error of vddq(ref.)-vddq(model)	Max relative error of gndq(ref.)-gndq(model)	Max relative error of vddq(ref.)-vddq(model)	Max relative error of gndq(ref.)-gndq(model)
IBIS	43 %	29 %	37 %	26 %
MPILOG	18 %	25 %	21 %	20 %
	Standard deviation of vddq(ref.)-vddq(model)	Standard deviation of gndq(ref.)-gndq(model)	Standard deviation of vddq(ref.)-vddq(model)	Standard deviation of gndq(ref.)-gndq(model)
IBIS	218 mV	166 mV	324 mV	308 mV
MPILOG	121 mV	130 mV	86 mV	86 mV

Application: Eye diagrams

DDR, third test case

Application: Eye diagrams

□ DDR second test case

	Setup (a), second test caseEye openingError		Setup (b), second test case	
			Eye opening	Error
Reference (trans. level)	73.8%	-	72%	-
IBIS	46.2 %	38.3 %	78.8 %	9.5 %
MPILOG	77.6 %	3.75 %	73.8 %	2.5 %

DDR third test case

	Setup (a), third test case		Setup (b), third trst case	
	Eye opening	Error	Eye opening	Error
Reference (trans. level)	70.2%	-	64%	-
IBIS	80.6 %	14.8 %	70.8 %	10.6 %
MPILOG	76 %	5.3 %	65.8 %	2.8 %

: emc group