A VHDL-AMS Pre/De-emphasis
buffer model using IBIS v3.2 data

IBIS Summit at DesignCon East 2004
Holiday Inn, Boxborough Woods, MA
April 5, 2004

Arpad Muranyi
Signal Integrity Engineering

Intel Corporation
arpad.muranyi@intel.com

Outline

Block diagram of a Pre/De-emphasis buffer
Background / features

Block diagram of VHDL-AMS model

Work to be done

Code segments

Simulation schematics

Waveform examples

Summary

6/23/2003 Page 2

*Other brands and names are the property of their respective owners

Block diagram of a Pre/De-emphasis buffer

Pre-emphasis sums both sources through one “leg”
De-emphasis “steals” current from non-driving leg

Total current in system always the same

Main

DeE
C K D

K |
Pre-emphasis De-emphasis
A & C =o0on A & D =on

B & D = off B & C = off

Curtesey of Michael Mirmak

6/23/2003 Page 3 CPD
*Other brands and names are the property of their respective owners

Background / features

The VHDL-AMS Pre/De-emphasis buffer model introduced in this
presentation is based on the VHDL-AMS single-ended and
differential buffer models introduced at the June 5 and June 23,
2003 and February 2, 2004 IBIS Summits
http://www.eda.org/pub/ibis/summits/jun03b/muranyil.pdf
http://www.eda.org/pub/ibis/summits/feb04a/muranyi2.pdf

This model also incorporates the modeling technique developed
for differential buffers presented at the October 15, 2002 and
October 21, 2003 IBIS Summits

http://www.eda.org/pub/ibis/summits/octO2/muranyi.pdf
http://www.eda.org/pub/ibis/summits/oct03/muranyi.pdf

Main features:
1 digital input, 1 digital enable, 1 digital clock input (with edge selector parameter)
1 digital output (dummy for receiver out)
4 analog supplies, 2 analog I/O ports (differential pair with selectable initial condition)
Uses normal IBIS data (I-V and V-t tables) for “common mode” component [Model]

Uses fitted coefficients (calculated from the I-V tables of the [Series MOSFET] model)
for the “differential” component

Includes 4-way split C_comp plus C_diff
“I/O_open_source” model, i.e. there is no “pulldown” |-V table (for SATA buffers)
Uses the 1 equation / 1 unknown algorithm

6/23/2003 Page 4 CPD
*Other brands and names are the property of their respective owners

http://www.eda.org/pub/ibis/summits/jun03b/muranyi1.pdf
http://www.eda.org/pub/ibis/summits/feb04a/muranyi2.pdf
http://www.eda.org/pub/ibis/summits/oct02/muranyi.pdf
http://www.eda.org/pub/ibis/summits/oct03/muranyi.pdf

Block diagram of the VHDL-AMS model

Library calls

Entity
generics | Added “Edge” and “Out_ini”
ports Added digital port for clock input
Architecture
guantities Doubled most quantities and signals for 2" tap of driver,
signals Removed quantities and signals for pulldown
functions
lookup

common length | Reduced number of vectors by half since
common time this model handles 2 V-t tables only

common wfm

coeff Replaced 2EQ/2UK with 1EQ/1UK algorithm
Processes
clock Added clocking logic,
catch Doubled digital logic for 2" tap of driver,
. Modified previous logic to be more efficient,
event time and removed pulldown equations

B_reak statements . o Doubled all equations for 2" tap of
Simultaneous equations to select coefficients driver, modified equations to

- - accommodate the more efficient logic,
Simultaneous equations to calculate output currents | v ..o eq ouildown equations

6/23/2003 Page 5 CPD
*Other brands and names are the property of their respective owners

Work to be done

Modify C_comp compensation algorithm to
account for mutual loading effects between taps
See Michael Mirmak’s presentation today
Have equations already, but need to implement and test them
Test and verify that the model is working correctly
Generate waveform overlays with SPICE model simulations

6/23/2003 Page 6

*Other brands and names are the property of their respective owners

VHDL-AMS implementation — changes (1)

entity I1BIS_DIFF_OS_CL

generic (Edge

Out_ini

C_comp

k_ C_comp_pc :
k C_comp_pu :
k C comp_pd :
k C comp_gc :

C_diff

V_pu_ref :
V_pd_ref :

R _diff - re

-- Vectors of the IV c

6/23/2003

*Other brands and names are the property of their respective owners

K_2TAP is

integer = 2; -- "0"™ = Falling edge triggered
-- "1™ = Rising edge triggered
-- 2" = Triggers on both edges

: std _logic := "Z"; -- Initial condition for output

real := 1.00e-12; -- Default C_comp value and

real = 0.25; -- splitting coefficients

real = 0.25;

real := 0.25;

real = 0.25;

real = 50.0e-15; -- Default C_diff value (50.0fF)

real = 1.8;
real :-= ;

-6.503179353194756e-006;
2.541816815085296e-003;
-2.541334083148360e-003;
2.809854297776799e-005;
-4.580644144607367e-004;
4.354430013260378e-004;

al = 700.0; -- In case a linear resistor does the job

urve tables

Page 7

VHDL-AMS implementation — changes (2)

VFfx_pu_on : real = 1.0;

Vfx_pu_off : real = 1.0;

Rfx_pu_on : real := 50.0;

Rfx_pu_off : real := 50.0;

Delta_t : real := 1.0e-12); -- This parameter

-- determines what the maximum time delta will be between the
-- points of the Vt curves and scaling coefficient curves
-- after preprocessing the input data.

port (signal In_D : in std_logic;
signal En_D in std_logic;
signal Rev_ D : out std logic;
signal Clk :in std_logic;
terminal 10 _p : electrical;
terminal 10 n : electrical;
terminal PC_ref : electrical;
terminal PU_ref : electrical;
terminal PD_ref : electrical;
terminal GC_ref : electrical);

6/23/2003 Page 8

*Other brands and names are the property of their respective owners

VHDL-AMS implementation - changes (3)

quantity Vpc p O across Ipc p O through PC ref to 10 p;
quantity Vpu p O across lIpup O through PU ref to 10 p;
quantity Vgc p O across Igc p O through 10 p to GC_ref
quantity Vpc_n_ O across Ipc n_ O through PC_ref to 10 _n;
quantity Vpu_ n O across Ipu n O through PU ref to 10 n;
quantity Vgc n O across Igc n O through 10 _n to GC_ref
quantity Vpc p 1 across lIpc p 1 through PC_ref to 10 _p;
quantity Vpu p 1 across lpup 1 through PU ref to 10 p;
quantity Vgc p 1 across Igc p 1 through 10 p to GC_ref
quantity Vpc_n_1 across Ipc n_1 through PC_ref to 10_n;
quantity Vpu_n_1 across lIpu_n_1 through PU_ ref to 10 _n;
quantity Vgc n_ 1 across Igc n 1 through 10 _n to GC_ref
-- Common mode components for C_comp

quantity Vc_pc p across Ic pc p through PC ref to 10 p;
quantity Vc pu p across Ic pup through PU ref to 10 p;
quantity Vc pd p across Ic pd p through 10 p to PD_ref;
quantity Vc _gc p across Ic gc p through 10 p to GC_ref;
quantity Vc_pc_n across Ic pc n through PC ref to 10_n
quantity Vc pu n across Ic pun through PU ref to 10 n;
quantity Vc pd n across Ic pd n through 10 n to PD_ref;
quantity Vc_gc n across Ic_gc n through 10_n to GC_ref;

-- Differential 1V surface and C_comp

quantity V _pn across |_pn through 10 p to 10 n;
quantity Vc diff across Ic diff through 10 p to 10 _n;

6/23/2003

*Other brands and names are the property of their respective owners

VHDL-AMS implementation — changes (4)

signal Data D : std_logic := Out_ini
signal Data_InvDel D : std_logic := Out_ini;
signal pu_p_on_0O : std_logic = "0";
signal pu_p_off O : std_logic = "0~;
signal pu_n_on_O : std_logic = "0";
signal pu_n_off 0 : std_logic = "0";
signal pu_p_on_1 : std_logic = "0";
signal pu_p off 1 : std_logic = "0";
signal pu_n_on_1 : std_logic = "0";
signal pu n off 1 : std _logic := "0";
signal Tpu _p on_event 0 : real := 0.0;
signal Tpu_p off event 0 : real := 0.0;
signal Tpu_n_on_event_ 0 : real := 0.0;
signal Tpu_n_off event 0 : real := 0.0;
signal Tpu p on_event 1 : real := 0.0;
signal Tpu_p off event 1 : real := 0.0;
signal Tpu_n_on_event_1 : real := 0.0;
signal Tpu_n _off event 1 : real := 0.0;
quantity Kk pu p O > real := 0.0;
quantity k pu_n_0O : real := 0.0;
quantity kK pup 1 : real := 0.0;
quantity Kk pun 1 : real := 0.0;
6/23/2003 Page 10

*Other brands and names are the property of their respective owners

VHDL-AMS implementation - changes (5)

function Lookup (Extrapolation : in string = "1V";
X : in real;

n

n

real vector;
real_vector) return real is

function Find_common_length (Max_dt : real := 1.0e-12;
Twfm_1 : in real_vector;
Twfm_2 : in real_vector) return integer is

function Common_time (Max_dt : real := 1.0e-12;
Twfm_1 : in real_vector;
Twfm_2 : in real_vector) return real_vector is

function Common_wfm (New_t : in real_vector;
vwfm : in real_vector;
Twfm - in real_vector) return real_vector is

function Coeff (Edge : in string;

vwfm : in real _vector;

Twfm - in real_vector;

Rfx : in real;

VFx : iIn real;

liv : in real _vector;

Viv - in real_vector;

Vref : in real) return real_vector is

6/23/2003 Page 11

*Other brands and names are the property of their respective owners

VHDL-AMS implementation - changes (6)

Clock: process (Clk, En_D) is

begin
if (Clk = "1%) and (CIK"LAST_VALUE = "0%) then -- Rising edge
it (Edge = 1) or (Edge = 2) then
Data_InvDel D <= not Data D; -- One clock delayed inverted Data_ D
Data D <= In_D; -- Clocked input
end if;
elsift (Clk = "0") and (CRIK"LAST_VALUE = "1%) then -- Falling edge
it (Edge = 0) or (Edge = 2) then
Data_InvDel D <= not Data D; -- One clock delayed inverted Data_ D
Data D <= In_D; -- Clocked input
end if;
end if;

Catch_0: process (Data D, En_D) is

begin
Rcv_D <= Data_D; -— Dummy receiver logic
if (En.D = "1") and (Data D = "1") then -- Find logic state

pup on O <= "17;
pu_n off 0 <= "17;
pu_n_on_ 0 <= "0%;
pu p off 0 <= "0";
elsif (En_D = "1") and (Data_D = "0") then
pup on O <= "07;
pu_n_off 0 <= "0";
pu_n_on 0 <= "1%;
pu p off 0 <= "17;
else
pu p on O <= "07;
pun off 0 <= "17;
pu_n_on_ 0 <= "0%;
pu p off 0 <= "17;
end if;

6/23/2003 Page 12

*Other brands and names are the property of their respective owners

VHDL-AMS implementation — changes (7)

if (En_D = "1") and (Data_InvDel_D = "1%) then -- Find logic state
pu_p on_1 <= "1%;
pu n off 1 <= "17;
pu_n_on_1 <= "0%;
pu_p off 1 <= "0";
elsif (En_D = *"1") and (Data_InvDel_D = "0") then
pu_p on_1 <= "0%;
pu n off 1 <= "0";
pu_n_on_1 <= "17;
pu p off 1 <= "17;
else
pu_p on_1 <= "0%;
pu n off 1 <= "17;
pun_on_1 <= "0%;
pu_p off 1 <= "17;
end if;

begin

begin

6/23/2003 Page 13

*Other brands and names are the property of their respective owners

VHDL-AMS implementation - changes (8)

break
break
break
break

break
break
break
break

on
on
on
on

on
on
on
on

pu_n_on_0;

pu_n_off O;

pu_p_on_1;
pu_p off _1;
pu_n_on_1;

-- This section contains the simultaneous analog equations to find the
-- appropriate scaling coefficients according to

if (Tpu_p _on_event O
Tpu_n_on_event_0

if (pu_p_on 0 = "1%)
k_pu_p_0O

0.0 and Tpu_p_ off event O
0.0 and Tpu_n_off _event O

use
K_pu_on(K_pu_on“right);

elsift (pu_p off 0 = "1%) use

k pup O

else

k pup O

end use;

if (pu_n_on O
k_ pu_n_0 ==
elsit (pu_n off 0 = "1%) use

kK punoO

else

k punoO

end use;

6/23/2003

K _pu_off(K_pu off right);

0.0;

"1") use
K_pu_on(K_pu_on“right);

K _pu_off(K_pu off"right);

0.0;

Page 14

*Other brands and names are the property of their respective owners

the state the buffer.

0.0) use

- Initialization

- Start with the end of the
- Vt curves for those which
- are fully on initially

VHDL-AMS implementation - changes (9)

else -- Look up coefficients in normal operation

if (puponO = "1") use

k pu_ p 0 == Lookup("Vt", now - Tpu p _on_event 0, K pu_on, T_common);
elsif (pu p off 0 = "1%) use

k pu_p 0 == Lookup("Vt", now - Tpu_p off event 0, K pu off, T_common);
else

k pu p 0 == K _pu_on(K_pu_on"left);
end use;

if (punonO = "1%) use

k_ pu_n_0 == Lookup("Vt", now - Tpu_n_on_event 0, K _pu_on, T_common);
elsif (pun off 0 = "1%) use

k pu_n 0 == Lookup("Vt", now - Tpu _n_off event 0, K pu off, T _common);
else

k_ pu_n_0 == K_pu_on(K_pu_on*left);
end use;

end use;

-- This section contains the simultaneous analog equations to find the
-— appropriate scaling coefficients according to the state the buffer.

if (Tpu p on event 1 = 0.0 and Tpu_p off event 1 = 0.0 and
Tpu_n_on_event_1 = 0.0 and Tpu_n_off _event_1 = 0.0) use
-- Initialization
if (puponl1l="1") use -- Start with the end of the
k pup 1 == K pu on(K_pu on"right); -- Vt curves for those which
elsif (pu_p off 1 = "1%) use -- are fully on initially
k_pu_p_1 == K_pu_off(K_pu_off right);
else
K pup 1 ==0.0;
end use;

if (pu_n_on_1 = "1%) use
k pu_n_1 == K_pu_on(K_pu_on"right);
elsif (pun off 1 = "1%) use
k_pu_n_1 == K_pu_off(K_pu_off"right);
else
k pun_1 == 0.0;
end use;
6/23/2003 --- Page 15

*Other brands and names are the property of their respective owners

VHDL-AMS implementation - changes (10)

Ipc p 0O == -1.0 * Lookup("'IV*", Vpc_p_0O, 1_pc, V_pc);
Ipu p O == -1.0 * kK pup 0 * Lookup('"IV", Vpu_p 0, I _pu, V pu);
Igc_ p O == Lookup(*'1V", Vgc_p_0, 1_gc, V_gc)
Ipc n O == -1.0 * Lookup(*"IV", Vpc_n O, I _pc, V_pc);
Ipu_n_O == -1.0 * k_pu_n_0 * Lookup("IV", Vpu_n_0, 1 _pu, V_pu);
lgc_n_O == Lookup(**1V*", vgc_n_0O, I_gc, V_gc)
Ipc_p 1 == -0.2 * Lookup(*"'IV*, Vpc_p_ 1, 1I_pc, V_pc)
Ipu p 1 == -0.2 * kK pup 1 * Lookup("IV", Vpu p_ 1, I _pu, V_pu);
lgc_p_ 1 == 0.2 * Lookup("'IV*", Vgc_p_1, 1_gc, V_gco);
Ipc_n 1 == -0.2 * Lookup(*"'IV*, Vpc_n_1, 1 _pc, V_pc);
Ipu n_ 1 == -0.2 * k pun_1 * Lookup(CIV", Vpu_n_1, 1 _pu, V_pu);
Igc n 1 = 0.2 * Lookup(*"IV'", Vgc_ n 1, 1 _gc, V_go);

Ic pc p == k C_comp_pc * * Vc_pc_pTdot;
Ic pup ==k C comp_pu * C_ * Vc_pu_pT"dot;
Ic pd p ==k C comp_pd * C_comp * Vc_pd p-“dot;
Ic_ gc p == k C_comp_gc * * Vc_gc_pTtdot;

Ic pc n == k C_comp_pc * * Vc_pc_n"dot;
Ic pun ==k C comp_ pu * C_ * Vc_pu_n"dot;
Ic pd n == k C comp_pd * C_comp * Vc_pd n"dot;
Ic gc n == k C_comp_gc * * Vc_gc_nT"dot;

-— Differential 1V surface and C_comp

I_pn == kO + k1*Vpd_p_ 0 + k2*Vpd_n_0 + k3*Vpd_p_0*Vpd_n_0 + k4*(Vpd_p_0**2) + k5*(Vpd_n_0**2);
-— 1_pn == V_pn / R _diff; -- In case a linear resistor does the job
--— 1_pn == 0.0; -- In case we don"t want differential currents

Ic_diff == C_diff * Vc_diff dot;

end architecture DIFF_OS CLK_ 2TAP_1EQ;

6/23/2003 Page 16 CPD
*Other brands and names are the property of their respective owners

Simulation schematics

DIG_PULSEZ

-

F_ _CLK_2TAP1

05
Fr
LEVELSET1 EF

[
oo s

LEVEL

DIG_PULSE?

1
P
P
1
E
C
H
P
G

o) ™M == .
I

[

JJ
T =
T

6/23/2003

*Other brands and names are the property of their respective owners

Waveform example - Out Ini =2’

in_d

clk

data_d

data_inwvdel_d

out_p
out_n

6/23/2003

*Other brands and names are the property of their respective owners

clk

data_d

data_inwvdel_d

out_p
out_n

6/23/2003

*Other brands and names are the property of their respective owners

6/23/2003

*Other brands and names are the property of their respective owners

Summary

A Pre/De-emphasis VHDL-AMS buffer model has been
shown as a modification of the previously introduced “true
differential” 1/0 model
http://www.eda.org/pub/ibis/summits/apr04/IBIS _PreDe.vhd
Feel free to download and use the file any way you want
The modified model is a complete Pre/De-emphasis model
It has only one digital input, a clock and a differential pair of analog I/O port
This model can be used with [External Model] in IBIS v4.1 (not tested yet)

The C_comp compensation algorithm needs more work
The effects of the two buffer blocks loading each other must be accounted for

The model needs to be correlated and tested with a SPICE
level model

Page 20

http://www.eda.org/pub/ibis/summits/apr04/IBIS_PreDe.vhd

	Outline
	Block diagram of a Pre/De-emphasis buffer
	Background / features
	Block diagram of the VHDL-AMS model
	Work to be done
	VHDL-AMS implementation – changes (1)
	VHDL-AMS implementation – changes (2)
	VHDL-AMS implementation – changes (3)
	VHDL-AMS implementation – changes (4)
	VHDL-AMS implementation – changes (5)
	VHDL-AMS implementation – changes (6)
	VHDL-AMS implementation – changes (7)
	VHDL-AMS implementation – changes (8)
	VHDL-AMS implementation – changes (9)
	VHDL-AMS implementation – changes (10)
	Simulation schematics
	Waveform example - Out_ini = ‘Z’
	Waveform example - Out_ini = ‘0’
	Summary

