

Quiet line experiment

IBIS Open Forum Teleconference

October 7, 2005

Arpad Muranyi

Signal Integrity Engineering Intel Corporation arpad.muranyi@intel.com

Simulation circuit using "IBIS class" transistor model

HSPICE simulation file

```
Testing Output Response to Supply Noise
.OPTIONS POST=1 POST VERSION=9007 PROBE ACCURATE RMAX=0.5
.TRAN 1.0ps 4.0ns SWEEP Tpoint LIN 10 101e-12 1001e-12
.LIB 'Process.lib' Typ
.PROBE
+ DiePWR = V(DiePWR, DieGND)
+ DieGND = V(DieGND)
+ Out = V(Out, DieGND)
.param Tpoint = 101ps
+
*Vvcc DiePWR 0 DC= 5.0
Vvcc DiePWR 0 PWL
+ 0.0 5.0
+ 0.1ns
      5.0
+ Tpoint 4.0
+ 10.0ns 4.0
*
Vqnd DieGND 0 DC= 0.0
*Vgnd DieGND 0 PWL
*+ 0.0
       0.0
*+ 0.1ns
       0.0
*+ Tpoint
       1.0
*+ 10.0ns 1.0
*
Vin In DieGND DC= 5.0
*Vin DiePWR In DC= 0.0
X0 In Out DiePWR DiePWR DieGND DieGND DieGND IO buf
* in out pu
         pc pd gc
                      en
*
Rload Out Vtt R=50.0
Vload Vtt DieGND DC= 2.5
.END
```


The four configurations give identical results (high state)

Zooming in to see the details...

Make the PU and PD asymmetric

agreement between the four conditions any weaker

PU reduced to half the strength - High state

Gate voltage of the output transistors

Zooming in to see the details...

The four configurations give identical results (low state)

Zooming in to see the details...

PU reduced to half the strength - Low state

Gate voltage of the output transistors

Zooming in to see the details...

Conclusions

- Whether we are modulating the top or bottom supply voltage *DOES NOT MATTER*
- Due to internal RC effects the gate voltage of the output transistors will not be able to follow rapid supply voltage variations instantaneously
- The gate modulation effect cannot be modeled by DC measurements alone
- We have to find a good way to describe these AC effects in a general way before BIRD97/98 can be completed

Part II: Gate modulation and BIRD 97/98

IBIS Futures Teleconference

June 1, 2006

Arpad Muranyi

Signal Integrity Engineering Intel Corporation arpad.muranyi@intel.com

Linear scaling of I_{out} w/r V_{power} (Low state)

Percent deviation of I_{out}

Linear scaling of I_{out} w/r V_{power} (High state)

Zooming in to see the details...

Percent deviation of I_{out}

Percent deviation of I_{out} with different C_comp splitting

Compare stimulus with deviations

Part III: C_comp revisited

Steady supply, moving pad voltage (Low state, 3.27 pF)

Same with smaller C_comp in IBIS model (1.8 pF)

Frequency and voltage dependence in C_comp

To be sure, steady state solution is correct

Zoom in to see details...

Additional RC explained

The circuit shown here also agrees with the analysis results of the IBIS BIRD 79 and the accompanying presentations

http://www.vhdl.org/pub/ibis/birds/bird79.txt http://www.eda.org/pub/ibis/summits/mar02/giacotto.pdf http://www.eda.org/pub/ibis/summits/jun02/giacotto.pdf

Testing a series RC in parallel with C_comp

Zooming in to see the details...

Zooming some more...

Back to Part II with revised model

Modified IBIS model (Low state)

Same as previous, but tuned RC a little

Conclusions

- It may be possible to achieve a reasonably good model for the gate modulation effect by
 - scaling the I-V curves with static coefficients as described in BIRD98
 - adding a series RC in parallel with each (split) C_comp
 - fine tuning the C_comp splitting coefficients
 - *PROBLEM*: these are voltage and <u>state</u> dependent!
- The previous pages did not attempt to achieve the highest accuracy, additional fine tuning of the parameters would most likely achieve better results
 - continue work to show that this will also work in the high state
 - do more experiments to determine the best parameter extraction techniques (and/or automation) for model makers
- Based on this, the recommendation is to use additional RC circuits in parallel with each (split) C_comp
 - need to test more cases to prove this will work in most cases
 - this can be either added to BIRD98 or described by a new BIRD

