

Algorithmic Modeling BIRD

IBIS-ATM Group

August 24, 2007

Agenda

- Serial Link Design Trends
- IBIS-ATM Goals
- AMI Terminology
- Proposed IBIS File Structure & Syntax
- API Overview
- Interoperability tests & AMI toolboxes
- Next Steps & conclusion

Who Needs SerDes Models?

- System Designers
 - Predict end-end link BER
 - Evaluate system-level design tradeoffs
- ASIC designers
 - Evaluate different TX/RX behavior
- SerDes circuit designers
 - Validate with standard test setups
- Test Equipment Vendors
 - Model device-specific equalization & clock recovery

Serial Link Analysis Needs

- Analyze link behavior $> 10^7$ bits
- Model transmit / receive equalization
- Model clock recovery behavior
- Serial link analysis is best addressed through a combination of analytical methods
 - 1. Characterization of the analog channel
 - 2. Equalization & clock recovery modeling

Why Use Separate Steps?

- Exploit linear behavior of serial channel analog components for computational efficiency
- Leverage existing techniques for modeling equalization and clock recovery
 - Communication systems theory
- Enable multiple analytical approaches
 - Commercial EDA tools
 - Matlab / StatEye
 - IP vendor tools

IBIS-ATM Goals

 Establish a modeling standard for SerDes devices that describes

IBIS

- Analog I/O & electrical package characteristics
- Transmit / receive equalization
- Clock recovery behavior
- The standard must:
 - Support prediction of link Bit Error Rate (BER)
 - Enable EDA & SerDes model interoperability
 - Protect Semiconductor vendor IP
 - Support design optimization

Analytical Methodology

Terminology

Channel description includes return paths etc which are not shown for the sake of clarity

y(t)

= Signal at receiver decision point

Crosstalk Terminology

Proposed IBIS File Structure

[Algorithmic Model] Syntax

- [Algorithmic Model] section points to
 - Executable model code
 - Model-specific parameter file containing
 - A set of "Reserved" Parameters that allow EDA tools to understand what functions the model implements and adapt their flow accordingly
 - e.g., Ignore_bits, Init_Returns_Impulse
 - Model-specific parameter declarations
 - Tell the EDA tool what additional data needs to be passed to the model, what the legal values are and how to format it
 - BIRD covers both parameter types and data exchange formats
 - IBISCHK can parse and report on the parameter file, because formats are well-defined

Examples of IBIS Algorithmic Model Section

[Model] Tx_SerDes Model_type Output [Voltage_Range] 1.2 1.1 1.3

· · ·

[Algorithmic Model]

Executable Windows32visualStudio tx_serdes.dll tx_serdes_params.ami Executable Linuxgcc tx_serdes.dll tx_serdes_params.ami Executable Solaris tx_serdes.so tx_serdes_params.ami

[End Algorithmic Model]

[Model] Rx_SerDes Model_type Input [Voltage_Range] 1.2 1.1 1.3 ... [Algorithmic Model] [Executable Windows32visualStudio rx_serdes.dll rx_serdes_params.ami Executable Linuxgcc rx_serdes.dll rx_serdes_params.ami Executable Solaris rx_serdes.so rx_serdes_params.ami

[End Algorithmic Model]

Example AMI parameter file

(sampleAMI

```
(Model_specific Reserved Keyword
   txtaps is a structure
 (txtaps
    (tapid (Range -1 3) (type int) )
    (txtapcoeff
        (-1 (Range -0.1 0.1 0.1) (Type float)
    (Default 0))
     (0 (Range 1 1 0) (Type float) (Default 1))
     (1 (List -0.1 0.1) (Type float)(Default 0))
     (2 (Range -0.01 0.02 0.005) (Type float)
     (Default 0))
     (3 (Range -0.01 0.02 0.005) (Type float)
     (Default 0))
        tapcoeff
      txtaps
 (tx_freq_offset (Range 0 150 1) (Type ppm)
    (Default 0))
) | End User_Defined
   here is an example of txtaps instance
   (txtapcoeff (-1 -0.05) (0 1) (1 0) (2 0) (3 0))
   End SampleAMI
)
```

API Introduction

- Executable computer code models signal processing functions inside the SerDes transmitter / receiver
- Init: Impulse response processing
 - Initializes TX / RX model and optimizes device settings
 - Filter coefficients / channel compensation
 - Optionally returns modified input impulse response & equalization settings to EDA platform
- **GetWave:** Continuous time-domain waveform processing
 - Applies equalization & passes waveform to EDA platform
 - Recovers and passes "clock ticks" back to EDA platform
 - Performs any proprietary Post Processing

IBIS-ATM Algorithmic Models

Interoperability & AMI Toolboxes

- Interoperability tests performed successfully with sample AMI models
 - Cadence Rx AMI Model worked with SiSoft Tester program
 - SiSoft Tx AMI Model worked with Cadence Tester program
- Toolboxes, toolkits availability
 - SiSoft AMI toolkit is available on IBIS-ATM work archive
 - Cadence AMI toolbox will be available shortly

Next Steps & conclusion

• Formally submit the BIRD

 We look forward to feedback on AMI toolboxes from IBIS Open Forum