
What would the “pre-layout” package

and on-die interconnect examples

look like with the BIRD 163 syntax?

Arpad Muranyi
IBIS Interconnect Teleconference

April 9, 2014

Extending the proposed

<reserved buffer terminal name> : <pin name>

syntax in BIRD 163 could support everything

in the SiSoft proposal(s)

Additional reserved names, wildcards, etc… could be added to the list of reserved buffer

terminal names already mentioned in BIRD 163

Instead of supporting pin names only after the colon ":" character, we could also add

support for [Model] names, and perhaps other items

These extensions to BIRD 163 could support the same capabilities described in SiSoft's

proposal(s) and presentation(s)

For example, mapping a 4-port Touchstone model between two pins and two pads for

any differential pair which has DQS as the [Model] name would look like this:

[Circuit Call] DQS_pkg

| This is the package for all DQS diff-pairs

Parameters TS_FileName = ‘Typ.s4p’

| mapping port pin/pad/node

Port_map 1 pin_pos:DQS

Port_map 2 signal_pos:DQS

Port_map 3 pin_neg:DQS

Port_map 4 signal_neg:DQS

[End Circuit Call]

…

[External Circuit] DQS_pkg

…

[End External Circuit]

where "pin_pos" and "pin_neg" refers to any pin which is part of a differential pair

driven by any [Model] called "DQS", and "signal_pos" and "signal_neg" refer to the

signal terminals of any differential [Model] pair called "DQS". With this example, the

tool would use [External Circuit] DQS_pkg for the package behind all differential pin

pairs delivering signals from instances of [Model] DQS.

We could also have:

[Circuit Call] Default_Differential_pkg

Parameters TS_FileName = ‘Default.s4p’

| mapping port pin/pad/node

Port_map 1 pin_pos_Default

Port_map 2 signal_pos_Default

Port_map 3 pin_neg_Default

Port_map 4 signal_neg_Default

[End Circuit Call]

In this example, the tool would apply [External Circuit] Default_Differential_pkg

to all differential pairs unless another [Circuit Call] more narrowly matched the

user’s I/O buffers by [Model] name or pin name.

We could of course consider buffer type, or perhaps other items as a matching

criterion too.

The “generalized” or wildcard names in the previous examples tell the tool unambiguously

how to connect package models to I/O buffers and netlist them for simulation, given a clear

set of precedence rules for choosing the [Circuit Call] matched by “_Default” vs. “pin_” vs.

specific pin names. The IBIS file becomes more compact and perhaps more readable, and

it can offer both default and more specialized broadband models.

However, we will run into trouble when we introduce generalized node names which do

not unambiguously link the ports of a broadband model to a particular location in the

component.

Coupled broadband models will have that problem, such as the following SiSoft example:

[Begin ISS Model] Rx_Xtalk

Language Touchstone

File PDF .2 Rx_Min.s12p .6 Rx_Typ.s12p .2 Rx_Max.s12p

Ports Pin_Mod+.Rx.1 Pin_Mod-.Rx.1 Buf_Mod+.Rx.1 Buf_Mod-.Rx.1

Ports V_Pin_Mod+.Rx.2 V_Pin_Mod-.Rx.2 V_Buf_Mod+.Rx.2 V_Buf_Mod-.Rx.2

Ports Pin_Mod+.Rx.3 Pin_Mod-.Rx.3 Buf_Mod+.Rx.3 Buf_Mod-.Rx.3

[End ISS Model]

While the EDA tool might have the concept of “victim” vs. “aggressor” net (in post- and/or

pre-layout contexts), there certainly is no simple way to relate aggressor paths “1” and “3”

with specific I/O buffers in the layout unambiguously without user intervention, regardless

of the post- or pre-layout context.

