cādence

Algorithmic Modeling Interface (AMI) Proposed Changes to IBIS

C. Kumar, Architect Cadence Design Systems, Inc. October 17, 2006

Proposed changes to IBIS

- Introduce a new section ("AMI") with a unique name that is parallel to External Model construct
- AMI section sits on top of and leverages the circuit simulation infrastructure
 - Algorithmic model requires existing IBIS structure to represent the Tx and Rx load models
 - These Tx, Rx models along with the channel constitute a Linear Time Invariant (LTI) system
- AMI section introduces
 - Three API calls: AMI_init, AMI_GetWave, AMI_Close
 - Each call provides a means for model developer to pass algorithmic model specific parameters: # of filter taps, filter tap spacing, etc
 - Model developer provides documentation on parameters to model consumer
 - An AMI section can have multiple algorithmic models: for example one for Amplifier (eye opener) and another for DFE/CDR
 - Simulation platform expected to call each AMI section in the order it appears in the AMI section

Syntax Structure

	[Model]	Model_type, Polarity, Enable,
1		Vinl, Vinh, C_comp, C_comp_pullup,
1	I	C_comp_pulldown,
	I	C_comp_power_clamp,
1	I	C_comp_gnd_clamp
1		Vmeas, Cref, Rref, Vref
1	I. I	Rref_diff, Cref_diff
1	I	
1	[Model Spec]	Vinh, Vinl, Vinh+, Vinh-, Vinl+,
1	I	Vinl-, S_overshoot_high,
$\sim \sim \sim$		

Receiver_model_inv, R_diff_near, Receiver_model_inv, R_diff_near, R_diff_far Language, Corner, Parameters, Ports, D_to_A, A_to_D

[AMI] AMI_name

```
| Initialization function API
AMI_Initial()
Parameter a=5
Parameter b=10
```

.

| GetWave function API AMI_GetWave()

| Clear and Close function API AMI_Close()

[End AMI]

Simple API

cādence

• Init

- Initialize and optimize channel with Tx / Rx Model
- This is where the IC DSP decides how to drive the system: e.g., filter coefficients, channel compensation, ...
- Input: Channel Characterization, system and dll specific parameters from config file
 - bit period, sampling intervals, # of forward/backward coefficients, ...
- Output: Modified Channel Characterization, status
- GetWave
 - Modify continuous time domain waveform [CDR, Post Processing]
 - Input: Voltage at Rx input at specific times
 - Output: Modified Voltage, Clock tics, status
- Close
 - Clean up, exit

AMI_Init

