Improved C_comp Model Case Study

Randy Wolff Micron Technology DesignCon IBIS Summit Santa Clara, California January 30, 2015

©2015 Micron Technology, Inc. All rights reserved. Products are warranted only to meet Micron's production data sheet specifications. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Dates are estimates only. Drawings are not to scale. Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

Outline

Improving the C_comp model

Case Study for a Lossy C_comp model

- Creating a Measurement Based Model
- Test Case Simulation with two C_comp Models

Conclusion

Improving the C_comp Model

IBIS-ISS based C_comp subcircuit model in development by the ATM and Interconnect task groups

Model could represent a frequency dependent C_comp behavior

Creating a Measurement Based C_comp model

8Gb DDR4 x8

- 25nm process
- 78-ball single layer FBGA

3-DUTs

- C_pkg (no die)
- L_pkg (shorted die)
- C_pkg, L_pkg, C_die (live die)

VNA Measurement:

- S11
- 50MHz 8.5GHz
- 5.28125MHz steps

Modeled several Address inputs

	1	2	3	4	5	6	7	8	9	
Α	\bigcirc	\bigcirc						()	(Α
В		v _{ssq}	TDQS_c				DBI_n/TDQS	t Vssq	()	в
c			DQS_C						ŽQ ()	c
D			DQS_t					V _{SS}		D
E								()	V _{SSQ}	E
F	\bigvee_{SS}								() V	F
G							\bigcirc	\bigcirc		G
н	())									н
J		() ()					A12/PC		\bigcirc	J
к		\bigcirc							\bigcirc	к
L	()		A4						())	L
м										м
N	V _{DD} () V _{SS}	A8	AZ () PAR				A9	A/		N

Model Schematics – Address Inputs

C_pkg, L_pkg, C_die (live die)

+ Ter Ter Nul Z=t	m m2 m=2 50 Ohm	INDQ2 L6 L=1.9 nH Q=2 {t} F=30 MHz {t} Mode=proportional to sqrt(freq), constant L Rdc=0.145 Ohm {t}	SRC SRC6 R=7 Ohm {t} C=0.4 pF {t}	SRC SRC1 R=19 Ohm {t} C=0.41 pF {t}
. = .			=	

Step 1: C_pkg Simulation (S11, Mag/Phase)

freq, Hz

Step 2: L_pkg Simulation (S11, Mag/Phase)

Model Measurement

freq, Hz

Step 3: C_pkg, L_pkg, C_die Simulation (S11, Mag/Phase)

Micron

Result: ESR of C_comp is ~ 19 Ohms

Step 3: C_pkg, L_pkg, C_die Simulation (S11, Mag)

ESR=0 Ohms (Original)

ESR=19 Ohms (Lossy)

Model Measurement

Test Case Simulation

DDR4 LRDIMM

- Uses previously measured DDR4 SDRAM die
- Simulated post-register Address net
 - DDP devices (2 die in package)
 - 40 loads total
 - DDR4-2400, 1.2Gbps for Address
 - 255-bit PRBS stimulus
 - Light and Strong drive Register driver settings
- Compared simple C_comp model to lossy C_comp model

LRDIMM Layout

Micron

Net A09A Topology, Flower pattern

Non-Lossy C_comp, Strong Drive

U29 Jitter = 52ps AptACDC = 0.659ns VMarginDC = 173mV MinSlew = 0.92V/ns ArrTime = 0.505ns

Lossy C_comp, Strong Drive

U29 Jitter = 48ps AptACDC = 0.657ns VMarginDC = 182mV MinSlew = 0.90V/ns ArrTime = 0.503ns

Non-Lossy C_comp, Light drive

U29 Jitter = 62ps AptACDC = 0.607ns VMarginDC = 98mV MinSlew = 0.62V/ns ArrTime = 0.477ns

Lossy C_comp, Light drive

1.67

1.33

Conclusions

Driver Setting	C_comp Model	Vmargin DC - U25	Vmargin DC – U29
Strong Drive	Non-lossy (original)	139mV	173mV
Strong Drive	Lossy (with ESR)	155mV	182mV
Light Drive	Non-lossy (original)	108mV	98mV
Light Drive	Lossy (with ESR)	115mV	102mV

Including ESR improves voltage margin by 16mV , 11.5% (best case) ESR filters high frequency content at the die, which can improve SI

Improving the C_comp model is needed for improving the accuracy and usefulness of IBIS models.

