BIRD Template, Rev. 1.3
IBIS Specification Change Template, Rev. 1.3

[bookmark: _Toc203975853][bookmark: _Toc203976274][bookmark: _Toc203976412]BUFFER ISSUE RESOLUTION DOCUMENT (BIRD)

BIRD NUMBER: 	204
ISSUE TITLE: 		DQ_DQS GetWave Flow for Clock Forwarding Modeling
REQUESTOR: 	Walter Katz, The MathWorks
			Fangyi Rao, Keysight
 			Wendem Beyene, Intel
			Ambrish Varma, Cadence
DATE SUBMITTED:	April 22, 2020
DATE REVISED:	
DATE ACCEPTED:	

DEFINITION OF THE ISSUE:
In DDR systems, DQ Rx uses DQS Rx output signal as a forwarded clock to clock the slicer and the DFE. To model such clock forwarding functionality, the DQ Rx model needs as input the DQS clock times. This BIRD proposes a new AMI Reserved Parameter to enable the EDA tool to input clock times from the DQS Rx AMI_GetWave function to the DQ Rx AMI_GetWave function.
DQ and DQS AMI models will be delivered as a matched pair. The model maker can put all the DQS path delays in the DQS AMI_GetWave, all the DQS path delays in the DQ AMI_GetWave or split the DQS path delays between the DQ and DQS AMI_GetWave functions. There are several scenarios that demonstrate this:
1. The path delay from the DQS pad to all DQ latches in the chip are the same in a x4 lane and the same in a x8 lane, but the x4 path delay is different than a x8 path delay. In this case the x4 DQ and the x8 DQ would have the same DQ executable model. There would be different DQS executable models for x4 and x8 chips.
2. The path delay from the DQS pad to all DQ latches in the chip are different. In this case there would be one DQS executable model which had a common path delay (either 0 or some common path delay for all bits), and each bit would have a different DQ executable model (or other modeling configurations such as a different delay parameter value with a common DQ DLL) that would accommodate the different DQS path delay for each bit.
Since clock forwarding can be used for other applications, the words Clock and Data will be used in the BIRD in lieu of DQS and DQ.

SOLUTION REQUIREMENTS:
The IBIS specification must meet these requirements:
Table 1: Solution Requirements
	Requirement
	Notes

	1. Allow the Rx AMI_GetWave function to model clock forwarding.
	

SUMMARY OF PROPOSED CHANGES:
Add new Reserved Parameter Rx_Use_Clock_Input

PROPOSED CHANGES:
Parameter:	Rx_Use_Clock_Input
Required:	No, and illegal before AMI_Version 7.1
Direction:	Rx
Descriptors:
Usage: 		In
Type: String
Format: 		List, Value
Default: <string_literal>
Description: <string>
Definition:	Specifies the content of the Data Rx AMI_GetWave clock_times input supported by the model. The three possible content types are: (1) to be ignored, (2) the clock_times and (3) the wave output of the Clock Rx AMI_GetWave. If this parameter is present in the .ami file, the EDA tool is responsible to pass the selected value to the AMI_Init function.
Usage Rules:	Allowed values are “None”, “Times” and “Waves”. If omitted, the default is “None”. If “None” is selected, then the content of clock_times will be ignored by the model. If “Times” is selected, then the EDA tool will use the clock_times values that were output by the Clock Rx AMI_GetWave call as the clock_times values in the call to the Data Rx AMI_GetWave. If “Wave” is selected, then the EDA tool will use the wave values that were output by the Clock Rx AMI_GetWave call as the clock_times values in the call to the Data Rx AMI_GetWave.
Other Notes:	The wave input to both Data and Clock shall have the same block size and sample_interval. For “Times” and “Wave” options, if the Clock does not have a DLL or has a DLL without an AMI_GetWave, then the EDA tool should effectively insert a passthrough Clock AMI_GetWave function to create the wave or clock_times output vector required by the Data AMI_GetWave clock_times input.

Example:
(Rx_Use_Clock_Input (Usage In) (Type String) (List “None” “Times”)
(Description "The model can use the Clock AMI_GetWave output clock_times
 to sample the Data waveform at the Rx Data latch"))

+
-
…
…
DQ0

DQ Tx DLL
DQS Tx DLL
DQ Tx DLL
DQ7
DQS0

+
-
…
…
DQ8

DQ Tx DLL
DQS Tx DLL
DQ Tx DLL
DQ15
DQS1
DQ0
DQ7

+
-

+
-

DQS0
DQ8
DQS1
DQ15
…
…
…
…
DQS Rx DLL
DQ Rx
clock_times
DQ Rx
clock_times

DQS Rx DLL
DQ Rx
clock_times

DQ Rx
clock_times

1
1
1
1
1
1
2
2
3
3
3
3
Step 1: compute analog channel output according to IBIS 5.1-7.0 (crosstalk taken into account)
Step 2: compute output of all DQS Rx DLLs according to IBIS 5.1-7.0
Use either DQS Rx clock_times or wave output values as DQ Rx clock_times input values
Step 3: compute output of all DQ Rx DLLs
Channel

[bookmark: _GoBack]

BACKGROUND INFORMATION/HISTORY:

2
1
