BIRD Template, Rev. 1.3
IBIS Specification Change Template, Rev. 1.3

[bookmark: _Toc203975853][bookmark: _Toc203976274][bookmark: _Toc203976412]BUFFER ISSUE RESOLUTION DOCUMENT (BIRD)

BIRD NUMBER: 	209
ISSUE TITLE: 		Make Clock Times Output Required for Clock Executable Models
REQUESTOR: 	Arpad Muranyi, Siemens Digital Industries Software

DATE SUBMITTED:	January 28, 2021
DATE REVISED:	
DATE ACCEPTED:	March 12, 2021

DEFINITION OF THE ISSUE:
BIRD204 suggests that when a Clock executable model does not have an AMI_GetWave function, the waveform or clock times should be supplied by the EDA tool for the Data AMI_GetWave function. This can be achieved easily for waveforms because the EDA tool can implement a simple “passthrough” functionality in place of a missing AMI_GetWave function, but it poses serious complications when the Data executable model expects clock times. The EDA vendor may not have the information and/or algorithm(s) available that the author of the AMI model or the manufacturer of the actual device has, potentially making the clock times generated by the EDA tool ficticious or inaccurate. In addition, the information whether the Clock executable model returns clock times is not available to the EDA tool until the simulation is well under way or finished, which poses additional complications for the EDA tool in the decision making process on when it should generate clock times for the Data executable model. To eliminate these problems, it would be best to make it required for the Clock executable model to have an AMI_GetWave function which returns clock times when the Data executable model expects clock times.

Additionally, a spelling error needs to be corrected in Usage Rules: the allowed value “Wave” should be singular (not plural).

SUMMARY OF PROPOSED CHANGES:
Replace the text in the Usage Rules and the Other Notes sections of BIRD204 with the text proposed in this BIRD.

PROPOSED CHANGES:
Change the text highlighted in yellow (in BIRD204):
Parameter:	Rx_Use_Clock_Input
Required:	No, and illegal before AMI_Version 7.1
Direction:	Rx
Descriptors:
Usage: 		In
Type: String
Format: 		List, Value
Default: <string_literal>
Description: <string>
Definition:	Specifies the content of the Data Rx AMI_GetWave clock_times input supported by the model. The three possible content types are: (1) to be ignored, (2) the clock_times and (3) the wave output of the Clock Rx AMI_GetWave. If this parameter is present in the .ami file, the EDA tool is responsible to pass the selected value to the AMI_Init function.
Usage Rules:	Allowed values are “None”, “Times” and “Waves”. If omitted, the default is “None”. If “None” is selected, then the content of clock_times will be ignored by the model. If “Times” is selected, then the EDA tool will use the clock_times values that were output by the Clock Rx AMI_GetWave call as the clock_times values in the call to the Data Rx AMI_GetWave. If “Wave” is selected, then the EDA tool will use the wave values that were output by the Clock Rx AMI_GetWave call as the clock_times values in the call to the Data Rx AMI_GetWave.
Other Notes:	The wave input to both Data and Clock shall have the same block size and sample_interval. For “Times” and “Wave” options, if the Clock does not have a DLL or has a DLL without an AMI_GetWave, then the EDA tool should effectively insert a passthrough Clock AMI_GetWave function to create the wave or clock_times output vector required by the Data AMI_GetWave clock_times input.

Example:
(Rx_Use_Clock_Input (Usage In) (Type String) (List “None” “Times”)
(Description "The model can use the Clock AMI_GetWave output clock_times
 to sample the Data waveform at the Rx Data latch"))

to the text highlighted in green below:
Parameter:	Rx_Use_Clock_Input
Required:	No, and illegal before AMI_Version 7.1
Direction:	Rx
Descriptors:
Usage: 		In
Type: String
Format: 		List, Value
Default: <string_literal>
Description: <string>
Definition:	Specifies the content of the Data Rx AMI_GetWave clock_times input supported by the model. The three possible content types are: (1) to be ignored, (2) the clock_times and (3) the wave output of the Clock Rx AMI_GetWave. If this parameter is present in the .ami file, the EDA tool is responsible to pass the selected value to the AMI_Init function.
Usage Rules:	Allowed values are “None”, “Times” and “Wave”. If omitted, the default is “None”. If “None” is selected, then the content of clock_times will be ignored by the model. If “Times” is selected, then the EDA tool will use the clock_times values that were output by the Clock Rx AMI_GetWave call as the clock_times values in the call to the Data Rx AMI_GetWave. If “Wave” is selected, then the EDA tool will use the wave values that were output by the Clock Rx AMI_GetWave call as the clock_times values in the call to the Data Rx AMI_GetWave.
Other Notes:	The wave input to both Data and Clock shall have the same block size and sample_interval. For the “Wave” option, if the Clock does not have a DLL or has a DLL without an AMI_GetWave, then the EDA tool should effectively insert a passthrough Clock AMI_GetWave function to make the clock waveform available for the Data AMI_GetWave clock_times input. For the "Times" option, the Clock shall have a DLL with an AMI_GetWave that returns clock_times.

Example:
(Rx_Use_Clock_Input (Usage In) (Type String) (List “None” “Times”)
(Description "The model can use the Clock AMI_GetWave output clock_times
 to sample the Data waveform at the Rx Data latch"))

BACKGROUND INFORMATION/HISTORY:
The option of making this change as an editorial correction was discussed in emails and in the IBIS Advanced Technology Modeling Task Group teleconference on January 26, 2021, and the decision was made to submit a new BIRD with this change to supersede BIRD204.

2
1
image2.emf

Microsoft_Word_Document1.docx

+

-

…

…

DQ0

DQ Tx DLL

DQS Tx DLL

DQ Tx DLL

DQ7

DQS0

+

-

…

…

DQ8

DQ Tx DLL

DQS Tx DLL

DQ Tx DLL

DQ15

DQS1

DQ0

DQ7

+

-

+

-

DQS0

DQ8

DQS1

DQ15

…

…

…

…

DQS Rx DLL

DQ Rx

clock_times

DQ Rx

clock_times

DQS Rx DLL

DQ Rx

clock_times

DQ Rx

clock_times

1

1

1

1

1

1

2

2

3

3

3

3

Step 1: compute analog channel output according to IBIS 5.1-7.0 (crosstalk taken into account)

Step 2: compute output of all DQS Rx DLLs according to IBIS 5.1-7.0

Use either DQS Rx clock_times or wave output values as DQ Rx clock_times input values

Step 3: compute output of all DQ Rx DLLs

Channel

image1.emf

Microsoft_Word_Document.docx

+

-

…

…

DQ0

DQ Tx DLL

DQS Tx DLL

DQ Tx DLL

DQ7

DQS0

+

-

…

…

DQ8

DQ Tx DLL

DQS Tx DLL

DQ Tx DLL

DQ15

DQS1

DQ0

DQ7

+

-

+

-

DQS0

DQ8

DQS1

DQ15

…

…

…

…

DQS Rx DLL

DQ Rx

clock_times

DQ Rx

clock_times

DQS Rx DLL

DQ Rx

clock_times

DQ Rx

clock_times

1

1

1

1

1

1

2

2

3

3

3

3

Step 1: compute analog channel output according to IBIS 5.1-7.0 (crosstalk taken into account)

Step 2: compute output of all DQS Rx DLLs according to IBIS 5.1-7.0

Use either DQS Rx clock_times or wave output values as DQ Rx clock_times input values

Step 3: compute output of all DQ Rx DLLs

Channel

