	BUFFER ISSUE RESOLUTION DOCUMENT (BIRD)

BIRD ID#: 	156.3
ISSUE TITLE: IBIS-AMI Extension for Mid-channel Redrivers and Retimers
REQUESTER: Mahbubul Bari, Ron Olisar, and Hassan Rafat, Maxim Integrated;
 Fangyi Rao and Colin Warwick, Agilent Technologies, Inc.;
		Walter Katz and Todd Westerhoff, Signal Integrity Software, Inc.

DATE SUBMITTED: January 11, 2013
[bookmark: _GoBack]DATE REVISED: January 12, 2013; May 24, 2013, June 7, 2013
DATE ACCEPTED BY IBIS OPEN FORUM: June 7, 2013

ANALYSIS PATH/DATA THAT LED TO SPECIFICATION:

A redriver Repeater is one a type of device that is placed in the middle of the channel to compensate channel loss. A Repeater model consisted of an Rx and Tx model. The [Repeater Pin] keyword is used to pair the Rx and Tx pins to define a Repeater. A Repeater can either be a Redriver or Retimer.

It A Redriver equalizes the upstream channel signal and retransmits it to the downstream channel. The output signal is continuously driven by the input signal and no retiming is performed when the redriver Redriver retransmits the signal. As a Redriver Rx does not have a CDR (clock data recovery) circuit, it passes the equalized output waveform of the Rx half directly to the Tx half of the Repeater. Since the redriver Redriver can be nonlinear and noisy, its presence breaks the linear channel assumption in AMI simulation today. A Retimer contains a CDR, samples the Rx equalized waveform and generates a digital stimulus for the Tx half of the Repeater. The conversion from the Rx output waveform to the Tx digital input stimulus also breaks the linear channel assumption.

The proposed revision allows the accommodation of redrivers.

This BIRD introduces a new IBIS keyword [Repeater Pin] which associates the pins of an Rx model with the pins of a Tx model, thus associating an Rx model with a Tx model to form a complete Repeater. It also introduces a new AMI reserved parameter for Repeater Rx model to specify whether the Repeater is a Redriver or a Retimer.

ANY OTHER BACKGROUND INFORMATION:

Approved with changes shown below with highlighting in color, during the IBIS Open Forum teleconference on June 7, 2013.

Step 8b. Retimer: The simulation platform samples the output waveform of Retimer Rx AMI_GetWave at ½ UI after each clock tick returned by the function, generates a digital stimulus as the input to Tx2’s algorithmic model, regardless whether Tx2’s AMI_GetWave exists or not, and performs simulation on the downstream channel, which consists of Tx2, physical channel 2 and Rx2, according to the AMI flow defined in the spec for channels without Redriver. The logic level of the digital stimulus is 1 if sampled value >= Rx1’s Rx_Receiver_Sensitivity and 0 if sampled value <= Rx1’s Rx_Receiver_Sensitivity. If –Rx1’s Rx_Receiver_Sensitivity < sampled value < Rx1’s Rx_Reciver_Sensitivity, the logic level is unchanged from the previous bit. The digital stimulus have values of -½ volt for logic 0 and +½ volt for logic 1.

STATEMENT OF THE RESOLVED SPECIFICATIONS:

A Repeater is a type of device that is placed in the middle of the channel to compensate channel loss. Repeater has two categories, Redriver and Retimer. A Redriver equalizes the upstream channel signal and retransmits it to the downstream channel. The output signal is continuously driven by the input signal. A Redriver does not have a CDR, and no retiming is performed when the Redriver retransmits the signal. A Retimer equalizes the upstream channel signal, recovers the clock using a CDR and generates a digital stimulus that is transmitted to the downstream channel.

No new keywords are added. A redriver Repeater is modeled by two back-to-back input-output IBIS-AMI models as shown belowin Fig. 1.

 |---|
 | Redriver model |
 | |
 | * * * * |
 | * * *************** *************** * * |
 | * * * * * * * * |
 | * input * * input * * output * * output * |
-->|---* analog *-->* algorithmic *-->* algorithmic *-->* analog *---|-->
 | * model * * model * * model * * model * |
 | * * * * * * * * |
 | * * *************** *************** * * |
 | * * * * |
 | |
 |<------ input ibis model ------->| |<------ output ibis model ------>|
inputRx
analog
model
inputRx
algorithmic
model
outputTx
algorithmic
model
outputTx
analog
model
Redriver Repeater model
input Rx IBIS model
output Tx IBIS model

Figure 1: Repeater model
The analog part of the input Rx model represents the input termination at the device input. The analog part of the output Tx model represents the output impedance at the device output. The two algorithmic models represent equalizations, clock data recovery or CDR (if it exists) and pre-emphasis inside the device. Both In a Redriver, both algorithmic models can optionally implement the AMI_GetWave function. In a Retimer, the Rx algorithmic model must implement AMI_GetWave and the function must return clock ticks. The Retimer Tx algorithmic model can optionally implement AMI_GetWave. The order of signal flow in a redriver Repeater model is from input Rx analog to input Rx algorithmic to output Tx algorithmic to output Tx analog. It should be pointed out that the output analog model is driven continuously by the analog waveform returned by the output algorithmic model instead of digital trigger events as in a regular IBIS output model. Therefore, the output analog model is expected to describe an analog circuit as oppose to the conventional digital-to-analog converter. Looking from the input Rx analog portion, the input Rx algorithmic block is assumed to have infinite input impedance. Looking from the output Tx analog portion, the output Tx algorithmic block is assumed to have an output of an ideal voltage source.

A redriver Repeater model is specified in a single .ibs file that includes both input and output models. An example of redriver .ibs file is:

[IBIS Ver] 5.2
[File Name] Redriver.ibs
[Component] Redriver
…
[Pin] signal_name model_name R_pin L_pin C_pin
1p redriverRedriver_inputRx_1p redriverRedriver_inputRx
1n redriverRedriver_inputRx_1n redriverRedriver_inputRx
2p redriverRedriver_outputTx_2p redriverRedriver_outputTx
2n redriverRedriver_outputTx_2n redriverRedriver_outputTx

[Diff_Pin] inv_pin vdiff tdelay_typ tdelay_min tdelay_max
1p 1n NA NA NA NA
2p 2n NA NA NA NA

[Repeater Pin]
1p 2p

[Model] redriverRedriver_inputRx
Model_type Input
…
[Algorithmic Model]
Executable Windows_VisualStudio10.0.30319_32 redriverRedriver_inputRx_32.dll redriverRedriver_inputRx.ami
Executable Windows_VisualStudio10.0.30319_64 redriverRedriver_inputRx_64.dll redriverRedriver_inputRx.ami
Executable Linux_gcc4.6.1_32 redriverRedriver_inputRx_32.so redriverRedriver_inputRx.ami
Executable Linux_gcc4.6.1_64 redriverRedriver_inputRx_64.so redriverRedriver_inputRx.ami
[End Algorithmic Model]

[Model] redriverRedriver_outputTx
Model_type Output
…
[Algorithmic Model]
Executable Windows_VisualStudio10.0.30319_32 redriverRedriver_outputTx_32.dll redriverRedriver_outputTx.ami
Executable Windows_VisualStudio10.0.30319_64 redriverRedriver_outputTx_64.dll redriverRedriver_outputTx.ami
Executable Linux_gcc4.6.1_32 redriverRedriver_output_32.so redriverRedriver_outputTx.ami
Executable Linux_gcc4.6.1_64 redriverRedriver_output_64.so redriverRedriver_outputTx.ami
[End Algorithmic Model]

[End]

New AMI Reserved Parameters:
The Rx AMI model of a Repeater must have the Reserved Parameter “Repeater_Type”. This is a String parameter with either the value “Retimer” or “Redriver”.

As mentioned above, a Retimer Rx must has AMI_GetWave (GetWave_Exist = True) and the AMI_GetWave function must return clock_ticks. The simulation platform shall generate a digital input to the Retimer Tx by sampling the Rx AMI_GetWave output waveform ½ UI after each clock tick, The digital stimulus shall have values of -½ and +½.

In Repeater AMI simulations, both redriver Repeater analog models are treated as if they are linear and time-invariant. The incoming (upstream) analog channel of the Redriver, including the redriver inputupstream Tx analog model, the physical channel and the Repeater Rx analog model, is represented by an impulse response, hAC1. It is the input impulse to the redriver input algorithmic model’s AMI_Init function. The outgoing (downstream) analog channel of the Repeater, including the redriver Repeater output Tx analog model, the physical channel and the downstream Rx analog model, is represented by another impulse response, hAC2. It is the input impulse to the redriver output algorithmic model’s AMI_Init function. During time-domain simulations, the output signal from the upstream SerDes Tx algorithmic model is convolved with hAC1. The resulting waveform is the input waveform to the redriver input algorithmic model, whose output is the input waveform of the redriver output algorithmic model. Its output signal is convolved with hAC2 and the resulting waveform is the input waveform to the downstream SerDes Rx algorithmic model. Redrivers can be cascaded in a channel.

The time domain simulation flow for a Repeater link shown in Figure 2 is defined below.

Repeater
Rx
Tx1
Rx1
Tx2
Rx2
channel 1
channel 2
Repeater
Repeater Tx
Incoming
(upstream)
channel
outgoing
(downstream)
channel

[bookmark: _Ref357158910]Figure 2: Repeater link

Here Tx1 denotes the Repeater upstream channel (channel 1) Tx AMI model (including analog and algorithmic models), Rx1 the Repeater Rx AMI model (including analog and algorithmic models), Tx2 the Repeater Tx AMI model (including analog and algorithmic models) and Rx2 the Repeater downstream channel (channel 2) Rx AMI model (including analog and algorithmic models).

Step 1. The simulation platform obtains the impulse response of the upstream analog channel, which represents the combined impulse response of Tx1’s analog model, physical channel 1, and Rx1’s analog model.

Step 2. The output of step 1 is presented to Tx1’s AMI_Init function and Tx1’s AMI_Init function is executed.

Step 3. The output of step 2 is presented to Rx1’s AMI_Init function and Rx1’s AMI_Init function is executed.

Step 4. The simulation platform obtains the impulse response of the downstream analog channel, which represents the combined impulse response of Tx2’s analog model, physical channel 2, and Rx2’s analog model.

Step 5. The output of step 4 is presented to Tx2’s AMI_Init function and Tx2’s AMI_Init function is executed.

Step 6. The output of step 5 is presented to Rx2’s AMI_Init function and Rx2’s AMI_Init function is executed.

Step 7. The simulation platform performs simulation on the upstream channel, which consists of Tx1, physical channel 1, and Rx1, according to the AMI flow defined in the specification for channels without Repeaters.

Step 8a. Redriver: The simulation platform uses the signal waveform at the output end of Rx1’s algorithmic model in step 7, regardless whether Rx1’s AMI_GetWave exists or not, as the stimulus of Tx2’s algorithmic model, regardless whether Tx2’s AMI_GetWave exists or not, and performs simulation on the downstream channel, which consists of Tx2, physical channel 2 and Rx2, according to the AMI flow defined in the spec for channels without Redrivers.

Step 8b. Retimer: The simulation platform samples the output waveform of Retimer Rx AMI_GetWave at ½ UI after each clock tick returned by the function, generates a digital stimulus as the input to Tx2’s algorithmic model, regardless whether Tx2’s AMI_GetWave exists or not, and performs simulation on the downstream channel, which consists of Tx2, physical channel 2 and Rx2, according to the AMI flow defined in the spec for channels without Redriver. The logic level of the digital stimulus is 1 if sampled value >= Rx1’s Rx_Receiver_Sensitivity and 0 if sampled value <= Rx1’s Rx_Receiver_Sensitivity. If –Rx1’s Rx_Receiver_Sensitivity < sampled value < Rx1’s Rx_Reciver_Sensitivity, the logic level is unchanged from the previous bit. The digital stimulus have values of -½ volt for logic 0 and +½ volt for logic 1.

Step 9. The simulation platform calls the AMI_Close function of each algorithmic model in Tx1, Rx1, Tx2 and Rx2.

Since the redriver Redriver output signal is driven continuously by the input analog signal and does not have a sampling latch, clock times, if returned by a Redriver model, jitter parameters and the Rx_Noise parameter specified in Redriver .ami files are ignored if they are returned by a redriver modelby the simulation platform. For the same reason, jitter parameters specified in redriver .ami files are also ignored. Device noise is expected to be modeled in AMI_GetWave functions.
Since the Retimer output signal is driven by a digital stimulus as described above in step 8b, jitter and noise parameters specified in Retimer .ami files are applied according to the specification for channels without Repeaters.

The statistical simulation flow for a Repeater link shown in Fig. 2 is defined below.

Step 1. The simulation platform obtains the impulse response of the upstream analog channel, which represents the combined impulse response of Tx1’s analog model, physical channel 1, and Rx1’s analog model.

Step 2. The output of step 1 is presented to the Tx1’s AMI_Init function and Tx1’s AMI_Init function is executed.

Step 3. The output of step 2 is presented to the Rx1’s AMI_Init function and the Rx1’s AMI_Init function is executed.

Step 4. The simulation platform obtains the impulse response of the downstream analog channel, which represents the combined impulse response of Tx2’s analog model, physical channel 2, and Rx2’s analog model.

Step 5. The output of step 4 is presented to Tx2’s AMI_Init function and Tx2’s AMI_Init function is executed.

Step 6. The output of step 5 is presented to Rx2’s AMI_Init function and Rx2’s AMI_Init function is executed.

Step 7a. Redriver: The simulation platform convolves impulse responses returned by Rx1’s AMI_Init in step 3 and by Rx2’s AMI_Init in step 6 to obtained the full channel impulse response and uses it to perform statistical simulation.

Step 7b. Retimer: The simulation platform uses the impulse responses returned by Rx1’s AMI_Init in step 3 to perform a statistical simulation of channel 1. The simulation platform uses the impulse responses returned by Rx2’s AMI_Init in step 6 to perform a statistical simulation of channel 2.

A mixture of Redrivers and Retimers can be cascaded in a channel.

Parameter DEFINITIONs

Parameter:	Repeater_Type
Required:	No
Descriptors:
Usage:		Info
Type:		String
Format:		Value
Default:	None
Description:	<String>
Definition:	This parameter is a reserved parameter of Repeater Rx model and shall have the value “Redriver” or “Retimer”
Usage Rules:	This parameter is required if the Rx model is part of a Repeater Rx/Tx pair. A Retimer Rx model must has AMI_GetWave (GetWave_Exists = True) and the function must return clock_ticks.

Examples:
(Repeater (Usage Info)(Type String)(Value “Redriver”))

Add to Section 3A "KEYWORD HIERARCHY" after
 │ ├── [Diff Pin]					inv_pin, vdiff, tdelay_typ,
 │ │							tdelay_min, tdelay_max

the following

 │ ├── [Repeater Pin]				tx_non_inv_pin

Add section 5 "COMPONENT DESCRIPTION" before
Keyword:	[Series Pin Mapping]

the following

[bookmark: _Toc203975852][bookmark: _Toc203976273][bookmark: _Toc203976411]Keyword:	[Repeater Pin]
Required:	No
Description:	Associates a differential Rx non-inv pin with a Tx non-inv pin to form a Repeater.
Sub-Params:	tx_non_inv_pin
Usage Rules:	Enter only Repeater pin pairs. The first column, [Repeater Pin] contains a non-inv pin name of an entry in the [Diff Pin] section that represents an Input or Input_diff model corresponding to the Rx part of the Repeater model. The second column, tx_non_inv_pin contains a non-inv pin name of an entry in the [Diff Pin] section that represents an Output or Output_diff model corresponding to the Tx part of the Repeater model.
Other Notes:	Each line must contain two columns. A pin name may appear in only one [Repeater Pin] record.
The column length limits are:
[Repeater Pin]		5 characters max
tx_non_inv_pin	5 characters max
Example:
[Repeater Pin] tx_non_inv_pin
3 11

